Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2202261119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36206369

RESUMO

Global change is altering the vast amount of carbon cycled by microbes between land and freshwater, but how viruses mediate this process is poorly understood. Here, we show that viruses direct carbon cycling in lake sediments, and these impacts intensify with future changes in water clarity and terrestrial organic matter (tOM) inputs. Using experimental tOM gradients within sediments of a clear and a dark boreal lake, we identified 156 viral operational taxonomic units (vOTUs), of which 21% strongly increased with abundances of key bacteria and archaea, identified via metagenome-assembled genomes (MAGs). MAGs included the most abundant prokaryotes, which were themselves associated with dissolved organic matter (DOM) composition and greenhouse gas (GHG) concentrations. Increased abundances of virus-like particles were separately associated with reduced bacterial metabolism and with shifts in DOM toward amino sugars, likely released by cell lysis rather than higher molecular mass compounds accumulating from reduced tOM degradation. An additional 9.6% of vOTUs harbored auxiliary metabolic genes associated with DOM and GHGs. Taken together, these different effects on host dynamics and metabolism can explain why abundances of vOTUs rather than MAGs were better overall predictors of carbon cycling. Future increases in tOM quantity, but not quality, will change viral composition and function with consequences for DOM pools. Given their importance, viruses must now be explicitly considered in efforts to understand and predict the freshwater carbon cycle and its future under global environmental change.


Assuntos
Gases de Efeito Estufa , Vírus , Amino Açúcares/metabolismo , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Gases de Efeito Estufa/metabolismo , Lagos/microbiologia , Vírus/genética , Vírus/metabolismo , Água/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(41): e2209152119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36201540

RESUMO

Marine dissolved organic matter (DOM) is a major reservoir that links global carbon, nitrogen, and phosphorus. DOM is also important for marine sulfur biogeochemistry as the largest water column reservoir of organic sulfur. Dissolved organic sulfur (DOS) can originate from phytoplankton-derived biomolecules in the surface ocean or from abiotically "sulfurized" organic matter diffusing from sulfidic sediments. These sources differ in 34S/32S isotope ratios (δ34S values), with phytoplankton-produced DOS tracking marine sulfate (21‰) and sulfurized DOS mirroring sedimentary porewater sulfide (∼0 to -10‰). We measured the δ34S values of solid-phase extracted (SPE) DOM from marine water columns and porewater from sulfidic sediments. Marine DOMSPE δ34S values ranged from 14.9‰ to 19.9‰ and C:S ratios from 153 to 303, with lower δ34S values corresponding to higher C:S ratios. Marine DOMSPE samples showed consistent trends with depth: δ34S values decreased, C:S ratios increased, and δ13C values were constant. Porewater DOMSPE was 34S-depleted (∼-0.6‰) and sulfur-rich (C:S ∼37) compared with water column samples. We interpret these trends as reflecting at most 20% (and on average ∼8%) contribution of abiotic sulfurized sources to marine DOSSPE and conclude that sulfurized porewater is not a main component of oceanic DOS and DOM. We hypothesize that heterogeneity in δ34S values and C:S ratios reflects the combination of sulfurized porewater inputs and preferential microbial scavenging of sulfur relative to carbon without isotope fractionation. Our findings strengthen links between oceanic sulfur and carbon cycling, supporting a realization that organic sulfur, not just sulfate, is important to marine biogeochemistry.


Assuntos
Matéria Orgânica Dissolvida , Enxofre , Carbono , Nitrogênio/análise , Fósforo , Fitoplâncton , Sulfatos/análise , Sulfetos , Isótopos de Enxofre , Água
3.
Environ Sci Technol ; 58(35): 15587-15597, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39163040

RESUMO

The carbonyl functionality of natural organic matter (NOM) is poorly constrained. Here, we treated Suwannee River NOM (SRNOM) with ammonium acetate and sodium cyanoborohydride to convert ketone-containing compounds by reductive amination to their corresponding primary amines. The total dissolved nitrogen content increased by up to 275% after amination. Up to 30% of the molecular formulas of SRNOM contained isomers with ketone functionalities as detected by ultrahigh-resolution mass spectrometry. Most of these isomers contained one or two keto groups. At least 3.5% of the oxygen in SRNOM was bound in ketone moieties. The conversion of reacted compounds increased linearly with O/H values of molecular formulas and was predictable from the elemental composition. The mean conversion rate of reacted compounds nearly followed a log-normal distribution. This distribution and the predictability of the proportion of ketone-containing isomers solely based on the molecular formula indicated a stochastic distribution of ketones across SRNOM compounds. We obtained isotopically labeled amines by using 15N-labeled ammonium acetate, facilitating the identification of reaction products and enabling NMR spectroscopic analysis. 1H,15N HSQC NMR experiments of derivatized samples containing less than 20 µg of nitrogen confirmed the predominant formation of primary amines, as expected from the reaction pathway.


Assuntos
Cetonas , Cetonas/química , Compostos Orgânicos/química
4.
Environ Sci Technol ; 58(14): 6204-6214, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557085

RESUMO

Marine permeable sediments are important sites for organic matter turnover in the coastal ocean. However, little is known about their role in trapping dissolved organic matter (DOM). Here, we examined DOM abundance and molecular compositions (9804 formulas identified) in subtidal permeable sediments along a near- to offshore gradient in the German North Sea. With the salinity increasing from 30.1 to 34.6 PSU, the DOM composition in bottom water shifts from relatively higher abundances of aromatic compounds to more highly unsaturated compounds. In the bulk sediment, DOM leached by ultrapure water (UPW) from the solid phase is 54 ± 20 times more abundant than DOM in porewater, with higher H/C ratios and a more terrigenous signature. With 0.5 M HCl, the amount of leached DOM (enriched in aromatic and oxygen-rich compounds) is doubled compared to UPW, mainly due to the dissolution of poorly crystalline Fe phases (e.g., ferrihydrite and Fe monosulfides). This suggests that poorly crystalline Fe phases promote DOM retention in permeable sediments, preferentially terrigenous, and aromatic fractions. Given the intense filtration of seawater through the permeable sediments, we posit that Fe can serve as an important intermediate storage for terrigenous organic matter and potentially accelerate organic matter burial in the coastal ocean.


Assuntos
Matéria Orgânica Dissolvida , Ferro , Ferro/química , Água do Mar/química , Água , Compostos Orgânicos
5.
Environ Sci Technol ; 58(43): 19289-19304, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39413296

RESUMO

Dissolved organic matter (DOM) is an ultracomplex mixture that plays a central role in global biogeochemical cycles. Despite its importance, DOM remains poorly understood at the molecular level. Over the last decades, significant efforts have been made to decipher the chemical composition of DOM by high-resolution mass spectrometry (HR-MS) and liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS). Yet, the complexity and high degree of nonresolved isomers still hamper the full structural analysis of DOM. To address this challenge, we developed an offline two-dimensional (2D) LC approach using two reversed-phase dimensions with orthogonal pH levels, followed by MS/MS data acquisition and molecular networking. 2D-LC-MS/MS reduced the complexity of DOM, enhancing the quality of MS/MS spectra and increasing spectral annotation rates. Applying our approach to analyze coastal-surface DOM from Southern California (USA) and open-ocean DOM from the central North Pacific (Hawaii), we annotated in total more than 600 structures via MS/MS spectrum matching, which was up to 90% more than that in iterative 1D LC-MS/MS analysis with the same total run time. Our data offer unprecedented insights into the molecular composition of marine DOM and highlight the potential of 2D-LC-MS/MS approaches to decipher the chemical composition of ultracomplex samples.


Assuntos
Espectrometria de Massas em Tandem , Cromatografia Líquida , Metaboloma , Água do Mar/química , Compostos Orgânicos
6.
Anal Chem ; 95(39): 14770-14776, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37725656

RESUMO

The multiplicity-edited heteronuclear single quantum correlation (ME-HSQC) NMR method is widely used for the structural characterization of marine dissolved organic matter (DOM), which is a complex molecular mixture comprising millions of individual compounds. However, the standard ME-HSQC suffers from significant signal cancellation and subsequent loss of crucial structural information due to the overlap between CH3/CH (positive) and CH2 (negative) cross-peaks in overcrowded regions. This study introduces nonuniform sampling in frequency-reversed ME-HSQC (NUS FR-ME-HSQC), highlighting its remarkable potential for the comprehensive structural characterization of marine DOM. By reversing the frequency of CH2 cross-peaks into an empty region, the FR-ME-HSQC method effectively simplifies the spectra and eliminates signal cancellation. We demonstrate that nonuniform sampling enables the acquisition of comparable spectra in half the time or significantly enhances the sensitivity in time-equivalent spectra. Comparative analysis also identifies vulnerable CH2 cross-peaks in the standard ME-HSQC that coincide with CH3 and CH cross-peaks, resulting in the loss of critical structural details. In contrast, the NUS FR-ME-HSQC retains these missing correlations, enabling in-depth characterization of marine DOM. These findings highlight the potential of NUS FR-ME-HSQC as an advanced NMR technique that effectively addresses challenges such as signal overcrowding and prolonged experimental times, enabling the thorough investigation of complex mixtures with implications in several fields, including chemistry, metabolomics, and environmental sciences. The advantages of NUS FR-ME-HSQC are experimentally demonstrated on two solid-phase-extracted DOM (SPE-DOM) samples from the surface and deep ocean. With this new technology, differences in the composition of DOM from various aquatic environments can be assigned to individual molecules.

7.
Environ Sci Technol ; 57(50): 21145-21155, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38065573

RESUMO

Dissolved organic matter (DOM) holds the largest amount of organic carbon in the ocean, with most of it residing in the deep for millennia. Specific mechanisms and environmental conditions responsible for its longevity are still unknown. Microbial transformations and photochemical degradation of DOM in the surface layers are two processes that shape its molecular composition. We used molecular data (via Fourier transform ion cyclotron resonance mass spectrometry) from two laboratory experiments that focused on (1) microbial processing of fresh DOM and (2) photodegradation of deep-sea DOM to derive independent process-related molecular indices for biological formation and transformation (Ibio) and photodegradation (Iphoto). Both indices were applied to a global ocean data set of DOM composition. The distributions of Iphoto and Ibio were consistent with increased photodegradation and biological reworking of DOM in sunlit surface waters, and traces of these surface processes were evident at depth. Increased Ibio values in the deep Southern Ocean and South Atlantic implied export of microbially reworked DOM. Photodegraded DOM (increased Iphoto) in the deep subtropical gyres of Atlantic and Pacific oceans suggested advective transport in warm-core eddies. The simultaneous application of Iphoto and Ibio disentangled and assessed two processes that left unique molecular signatures in the global ocean.


Assuntos
Carbono , Matéria Orgânica Dissolvida , Fotólise , Espectrometria de Massas/métodos , Oceanos e Mares
8.
Environ Sci Technol ; 57(13): 5464-5473, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36947486

RESUMO

Identifying drivers of the molecular composition of dissolved organic matter (DOM) is essential to understand the global carbon cycle, but an unambiguous interpretation of observed patterns is challenging due to the presence of confounding factors that affect the DOM composition. Here, we show, by combining ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, that the DOM molecular composition varies considerably among 43 lakes in East Antarctica that are isolated from terrestrial inputs and human influence. The DOM composition in these lakes is primarily driven by differences in the degree of photodegradation, sulfurization, and pH. Remarkable molecular beta-diversity of DOM was found that rivals the dissimilarity between DOM of rivers and the deep ocean, which was driven by environmental dissimilarity rather than the spatial distance. Our results emphasize that the extensive molecular diversity of DOM can arise even in one of the most pristine and organic matter source-limited environments on Earth, but at the same time the DOM composition is predictable by environmental variables and the lakes' ecological history.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Humanos , Lagos/química , Regiões Antárticas , Espectrometria de Massas , Rios/química
9.
Environ Sci Technol ; 57(25): 9214-9223, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37303158

RESUMO

The impacts of human activities on the riverine carbon (C) cycle have only recently been recognized, and even fewer studies have been reported on anthropogenic impacts on C cycling in rivers draining the vulnerable alpine areas. Here, we examined carbon isotopes (δ13CDOC and Δ14CDOC), fluorescence, and molecular compositions of riverine dissolved organic matters (DOM) in the Bailong River catchment, the eastern edge of the Tibetan Plateau to identify anthropogenic impacts on the C cycle. Human activities show limited impact on dissolved organic carbon (DOC) concentration, but significantly increased the age of DOC (from modern to ∼1600 yr B.P.) and changed the molecular compositions through agriculture and urbanization despite in the catchment with low population density. Agricultural activities indirectly increased the leaching of N-containing aged organic matter from deep soil to rivers. Urbanization released S-containing aged C from fossil products into rivers directly through wastewater. The aged DOC from agricultural activity and wastewater discharge was partly biolabile and/or photolabile. This study highlights that riverine C is sensitive to anthropogenic disturbance. Additionally, the study also emphasizes that human activities reintroduce aged DOC into the modern C cycle, which would accelerate the geological C cycle.


Assuntos
Efeitos Antropogênicos , Rios , Humanos , Idoso , Tibet , Matéria Orgânica Dissolvida , Águas Residuárias , Carbono
10.
Environ Sci Technol ; 57(45): 17291-17301, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37916767

RESUMO

Heating temperature (HT) during forest fires is a critical factor in regulating the quantity and quality of pyrogenic dissolved organic matter (DOM). However, the temperature thresholds at which maximum amounts of DOM are produced (TTmax) and at which the DOC gain turns into net DOC loss (TT0) remain unidentified on a component-specific basis. Here, based on solid-state 13C nuclear magnetic resonance, absorbance and fluorescence spectroscopies, and Fourier transform ion cyclotron resonance mass spectrometry, we analyzed variations in DOM composition in detritus and soil with HT (150-500 °C) and identified temperature thresholds for components on structural, fluorophoric, and molecular formula levels. TTmax was similar for detritus and soil and ranged between 225 and 250 °C for bulk dissolved organic carbon (DOC) and most DOM components. TT0 was consistently lower in detritus than in soil. Moreover, temperature thresholds differed across the DOM components. As the HT increased, net loss was observed initially in molecular formulas tentatively associated with carbohydrates and aliphatics, then proteins, peptides, and polyphenolics, and ultimately condensed aromatics. Notably, at temperatures lower than TT0, particularly at TTmax, burning increased the DOC quantity and thus might increase labile substrates to fuel soil microbial community. These composition-specific variations of DOM with temperature imply nonlinear and multiple temperature-dependent wildfire impacts on soil organic matter properties.


Assuntos
Matéria Orgânica Dissolvida , Incêndios Florestais , Temperatura , Calefação , Solo/química
11.
Environ Microbiol ; 24(5): 2282-2298, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35106913

RESUMO

In lake ecosystems, changes in eukaryotic and prokaryotic microbes and the concentration and availability of dissolved organic matter (DOM) produced within or supplied to the system by allochthonous sources are components that characterize complex processes in the microbial loop. We address seasonal changes of microbial communities and DOM in the largest Croatian lake, Vrana. This shallow lake is connected to the Adriatic Sea and is impacted by agricultural activity. Microbial community and DOM structure were driven by several environmental stressors, including drought, seawater intrusion and heavy precipitation events. Bacterial composition of different lifestyles (free-living and particle-associated) differed and only a part of the particle-associated bacteria correlated with microbial eukaryotes. Oscillations of cyanobacterial relative abundance along with chlorophyll a revealed a high primary production season characterized by increased levels of autochthonous DOM that promoted bacterial processes of organic matter degradation. From our results, we infer that in coastal freshwater lakes dependent on precipitation-evaporation balance, prolonged dry season coupled with heavy irrigation impact microbial communities at different trophic levels even if salinity increases only slightly and allochthonous DOM inputs decrease. These pressures, if applied more frequently or at higher concentrations, could have the potential to overturn the trophic state of the lake.


Assuntos
Lagos , Microbiota , Bactérias/genética , Clorofila A , Matéria Orgânica Dissolvida , Lagos/microbiologia , Estações do Ano
12.
Environ Sci Technol ; 56(12): 9092-9102, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35584055

RESUMO

Natural oil seepages contribute about one-half of the annual petroleum input to marine systems. Yet, environmental implications and the persistence of water-soluble hydrocarbons from these seeps are vastly unknown. We investigated the release of oil-derived dissolved organic matter (DOM) from natural deep sea asphalt seeps using laboratory incubation experiments. Fresh asphalt samples collected at the Chapopote asphalt volcano in the Southern Gulf of Mexico were incubated aerobically in artificial seawater over 4 weeks. The compositional changes in the water-soluble fraction of asphalt-derived DOM were determined with ultrahigh-resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) and by excitation-emission matrix spectroscopy to characterize fluorescent DOM (FDOM) applying parallel factor (PARAFAC) analysis. Highly reduced aliphatic asphalt-derived DOM was readily biodegraded, while aromatic and sulfur-enriched DOM appeared to be less bioavailable and accumulated in the aqueous phase. A quantitative molecular tracer approach revealed the abundance of highly condensed aromatic molecules of thermogenic origin. Our results indicate that natural asphalt and potentially other petroleum seepages can be sources of recalcitrant dissolved organic sulfur and dissolved black carbon to the ocean.


Assuntos
Hidrocarbonetos , Petróleo , Carbono/análise , Hidrocarbonetos/análise , Oceanos e Mares , Enxofre , Água
13.
Environ Sci Technol ; 56(6): 3758-3769, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35213127

RESUMO

Most oceanic dissolved organic matter (DOM) is still not fully molecularly characterized. We combined high-field nuclear magnetic resonance (NMR) and ultrahigh-resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) for the structural and molecular formula-level characterization of solid-phase extracted (SPE) DOM from surface, mesopelagic, and bathypelagic Atlantic and Pacific Ocean samples. Using a MicroCryoProbe, unprecedented low amounts of SPE-DOM (∼1 mg carbon) were sufficient for two-dimensional NMR analysis. Low proportions of olefinic and aromatic relative to aliphatic and carboxylated structures (NMR) at the sea surface were likely related to photochemical transformations. This was consistent with lower molecular masses and higher degrees of saturation and oxygenation (FT-ICR-MS) compared to those of the deep sea. Carbohydrate structures in the mesopelagic North Pacific Ocean suggest export and release from sinking particles. In our sample set, the universal molecular DOM composition, as captured by FT-ICR-MS, appears to be structurally more diverse when analyzed by NMR, suggesting DOM variability across oceanic provinces to be more pronounced than previously assumed. As a proof of concept, our study takes advantage of new complementary approaches resolving thousands of structural and molecular DOM features while applying reasonable instrument times, allowing for the analysis of large oceanic data sets to increase our understanding of marine DOM biogeochemistry.


Assuntos
Matéria Orgânica Dissolvida , Água , Espectrometria de Massas/métodos , Peso Molecular , Água/química
14.
Proc Natl Acad Sci U S A ; 116(49): 24689-24695, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740592

RESUMO

Invisible to the naked eye lies a tremendous diversity of organic molecules and organisms that make major contributions to important biogeochemical cycles. However, how the diversity and composition of these two communities are interlinked remains poorly characterized in fresh waters, despite the potential for chemical and microbial diversity to promote one another. Here we exploited gradients in chemodiversity within a common microbial pool to test how chemical and biological diversity covary and characterized the implications for ecosystem functioning. We found that both chemodiversity and genes associated with organic matter decomposition increased as more plant litterfall accumulated in experimental lake sediments, consistent with scenarios of future environmental change. Chemical and microbial diversity were also positively correlated, with dissolved organic matter having stronger effects on microbes than vice versa. Under our experimental scenarios that increased sediment organic matter from 5 to 25% or darkened overlying waters by 2.5 times, the resulting increases in chemodiversity could increase greenhouse gas concentrations in lake sediments by an average of 1.5 to 2.7 times, when all of the other effects of litterfall and water color were considered. Our results open a major new avenue for research in aquatic ecosystems by exposing connections between chemical and microbial diversity and their implications for the global carbon cycle in greater detail than ever before.


Assuntos
Biodiversidade , Ciclo do Carbono , Água Doce/química , Água Doce/microbiologia , DNA Ambiental/genética , DNA Ambiental/isolamento & purificação , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Gases de Efeito Estufa/análise , Lagos , Metagenoma/genética , Metagenômica/métodos , Traqueófitas/química
15.
Environ Sci Technol ; 55(14): 10175-10185, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34240854

RESUMO

Accelerated glacier melt and runoff may lead to inputs of labile dissolved organic matter (DOM) to downstream ecosystems and stimulate the associated biogeochemical processes. However, still little is known about glacial DOM composition and its downstream processing before entering the ocean, although the function of DOM in food webs and ecosystems largely depends on its composition. Here, we employ a set of molecular and optical techniques (UV-vis absorption and fluorescence spectroscopy, 1H NMR, and ultrahigh-resolution mass spectrometry) to elucidate the composition of DOM in Antarctic glacial streams and its downstream change. Glacial DOM consisted largely of a mixture of small microbial-derived biomolecules. 1H NMR analysis of bulk water revealed that these small molecules were processed downstream into more complex, structurally unrecognizable molecules. The extent of processing varied between streams. By applying multivariate statistical (compositional data) analysis of the DOM molecular data, we identified molecular compounds that were tightly associated and moved in parallel in the glacial streams. Lakes in the middle of the flow paths enhanced water residence time and allowed for both more DOM processing and production. In conclusion, downstream processing of glacial DOM is substantial in Antarctica and affects the amounts of biologically labile substrates that enter the ocean.


Assuntos
Ecossistema , Compostos Orgânicos , Regiões Antárticas , Camada de Gelo , Lagos , Espectrometria de Fluorescência
16.
Appl Microbiol Biotechnol ; 105(19): 7225-7239, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34536106

RESUMO

Marine dissolved organic matter (DOM) comprises a vast and unexplored molecular space. Most of it resided in the oceans for thousands of years. It is among the most diverse molecular mixtures known, consisting of millions of individual compounds. More than 1 Eg of this material exists on the planet. As such, it comprises a formidable source of natural products promising significant potential for new biotechnological purposes. Great emphasis has been placed on understanding the role of DOM in biogeochemical cycles and climate attenuation, its lifespan, interaction with microorganisms, as well as its molecular composition. Yet, probing DOM bioactivities is in its infancy, largely because it is technically challenging due to the chemical complexity of the material. It is of considerable interest to develop technologies capable to better discern DOM bioactivities. Modern screening technologies are opening new avenues allowing accelerated identification of bioactivities for small molecules from natural products. These methods diminish a priori the need for laborious chemical fractionation. We examine here the application of untargeted metabolomics and multiplexed high-throughput molecular-phenotypic screening techniques that are providing first insights on previously undetectable DOM bioactivities. KEY POINTS: • Marine DOM is a vast, unexplored biotechnological resource. • Untargeted bioscreening approaches are emerging for natural product screening. • Perspectives for developing bioscreening platforms for marine DOM are discussed.


Assuntos
Biotecnologia , Metabolômica
17.
Anal Chem ; 92(3): 2558-2565, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31887024

RESUMO

Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is one of the state-of-the-art methods to analyze complex natural organic mixtures. The precision of detected masses is crucial for molecular formula attribution. Random errors can be reduced by averaging multiple measurements of the same mass, but because of limited availability of ultrahigh-resolution mass spectrometers, most studies cannot afford analyzing each sample multiple times. Here we show that random errors can be eliminated also by averaging mass spectral data from independent environmental samples. By averaging the spectra of 30 samples analyzed on our 15 T instrument we reach a mass precision comparable to a single spectrum of a 21 T instrument. We also show that it is possible to accurately and reproducibly determine isotope ratios with FT-ICR-MS. Intensity ratios of isotopologues were improved to a degree that measured deviations were within the range of natural isotope fractionation effects. In analogy to δ13C in environmental studies, we propose Δ13C as an analytical measure for isotope ratio deviances instead of widely employed C deviances. In conclusion, here we present a simple tool, extensible to Orbitrap-based mass spectrometers, for postdetection data processing that significantly improves mass accuracy and the precision of intensity ratios of isotopologues at no extra cost.

18.
Anal Chem ; 92(10): 6832-6838, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32298576

RESUMO

Untargeted molecular analyses of complex mixtures are relevant for many fields of research, including geochemistry, pharmacology, and medicine. Ultrahigh-resolution mass spectrometry is one of the most powerful tools in this context. The availability of open scripts and online tools for specific data processing steps such as noise removal or molecular formula assignment is growing, but an integrative tool where all crucial steps are reproducibly evaluated and documented is lacking. We developed a novel, server-based tool (ICBM-OCEAN, Institute for Chemistry and Biology of the Marine Environment, Oldenburg-complex molecular mixtures, evaluation & analysis) that integrates published and novel approaches for standardized processing of ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Different from published approaches, we offer diagnostic and validation tools for all relevant steps. Among other features, we included objective and reproducible reduction of noise and systematic errors, spectra recalibration and alignment, and identification of likeliest molecular formulas. With 15 chemical elements, the tool offers high flexibility in formula attribution. Alignment of mass spectra among different samples prior to molecular formula assignment improves mass error and facilitates molecular formula confirmation with the help of isotopologues. The online tool and the detailed instruction manual are freely accessible at www.icbm.de/icbm-ocean.

19.
Environ Sci Technol ; 54(1): 195-206, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31742395

RESUMO

About 250 Tg of dissolved organic carbon are annually transported from inland waters to coastal systems making rivers a critical link between terrestrial and ocean carbon pools. During transport through fluvial systems, various biogeochemical processes selectively remove or transform labile material, effectively altering the composition of dissolved organic matter (DOM) exported to the ocean. The river continuum concept (RCC) has been historically used as a model to predict the fate and quality of organic matter along a river continuum. However, the conversion of natural landscapes for urban and agricultural practices can also alter the sources and quality of DOM exported from fluvial systems, and the RCC may be significantly limited in predicting DOM quality in anthropogenically impacted watersheds. Here, we studied DOM dynamics in the Altamaha River watershed in Georgia, USA, a fluvial system where headwater streams are highly impacted by anthropogenic activities. The primary goal of this study was to quantitatively assess the importance of both the RCC and land use as environmental drivers controlling DOM composition. Land use was a stronger predictor of spatial variation (∼50%) in DOM composition defined by both excitation-emission matrix-parallel factor analysis (EEM-PARAFAC) and ultrahigh-resolution mass spectrometry. This is compared to an 8% explained variability that can be attributed to the RCC. This study highlights the importance of incorporating land use among other controls into the RCC to better predict the fate and quality of DOM exported from terrestrial to coastal systems.


Assuntos
Carbono , Rios , Agricultura , Análise Fatorial , Georgia
20.
Environ Microbiol ; 21(11): 4062-4075, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336026

RESUMO

Ammonia-oxidizing archaea (AOA) constitute a considerable fraction of microbial biomass in the global ocean, comprising 20%-40% of the ocean's prokaryotic plankton. However, it remains enigmatic to what extent these chemolithoautotrophic archaea release dissolved organic carbon (DOC). A combination of targeted and untargeted metabolomics was used to characterize the exometabolomes of three model AOA strains of the Nitrosopumilus genus. Our results indicate that marine AOA exude a suite of organic compounds with potentially varying reactivities, dominated by nitrogen-containing compounds. A significant fraction of the released dissolved organic matter (DOM) consists of labile compounds, which typically limit prokaryotic heterotrophic activity in open ocean waters, including amino acids, thymidine and B vitamins. Amino acid release rates corresponded with ammonia oxidation activity and the three Nitrosopumilus strains predominantly released hydrophobic amino acids, potentially as a result of passive diffusion. Despite the low contribution of DOC released by AOA (~0.08%-1.05%) to the heterotrophic prokaryotic carbon demand, the release of physiologically relevant metabolites could be crucial for microbes that are auxotrophic for some of these compounds, including members of the globally abundant and ubiquitous SAR11 clade.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Processos Heterotróficos/fisiologia , Compostos Orgânicos/metabolismo , Carbono/metabolismo , Crescimento Quimioautotrófico/fisiologia , Oceanos e Mares , Oxirredução , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA