Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Rev Neurosci ; 25(1): 30-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049610

RESUMO

Worldwide, over 694 million people have been infected with SARS-CoV-2, with an estimated 55-60% of those infected developing COVID-19. Since the beginning of the pandemic in December 2019, different variants of concern have appeared and continue to occur. With the emergence of different variants, an increasing rate of vaccination and previous infections, the acute neurological symptomatology of COVID-19 changed. Moreover, 10-45% of individuals with a history of SARS-CoV-2 infection experience symptoms even 3 months after disease onset, a condition that has been defined as 'post-COVID-19' by the World Health Organization and that occurs independently of the virus variant. The pathomechanisms of COVID-19-related neurological complaints have become clearer during the past 3 years. To date, there is no overt - that is, truly convincing - evidence for SARS-CoV-2 particles in the brain. In this Review, we put special emphasis on discussing the  methodological difficulties of viral detection in CNS tissue and discuss immune-based (systemic and central) effects contributing to COVID-19-related CNS affection. We sequentially review the reported changes to CNS cells in COVID-19, starting with the blood-brain barrier and blood-cerebrospinal fluid barrier - as systemic factors from the periphery appear to primarily influence barriers and conduits - before we describe changes in brain parenchymal cells, including microglia, astrocytes, neurons and oligodendrocytes as well as cerebral lymphocytes. These findings are critical to understanding CNS affection in acute COVID-19 and post-COVID-19 in order to translate these findings into treatment options, which are still very limited.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Sistema Nervoso Central , Encéfalo , Barreira Hematoencefálica
2.
Nature ; 613(7942): 120-129, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517604

RESUMO

Myelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health1, it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans. We demonstrate that microglia are dispensable for developmental myelin ensheathment. However, they are required for subsequent regulation of myelin growth and associated cognitive function, and for preservation of myelin integrity by preventing its degeneration. We show that loss of myelin health due to the absence of microglia is associated with the appearance of a myelinating oligodendrocyte state with altered lipid metabolism. Moreover, this mechanism is regulated through disruption of the TGFß1-TGFßR1 axis. Our findings highlight microglia as promising therapeutic targets for conditions in which myelin growth and integrity are dysregulated, such as in ageing and neurodegenerative disease2,3.


Assuntos
Sistema Nervoso Central , Microglia , Bainha de Mielina , Adulto , Animais , Humanos , Camundongos , Axônios/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Microglia/citologia , Microglia/metabolismo , Microglia/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Cognição , Fator de Crescimento Transformador beta1/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Metabolismo dos Lipídeos , Envelhecimento/metabolismo , Envelhecimento/patologia
4.
J Autoimmun ; 142: 103136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935063

RESUMO

K2P2.1 (TREK1), a two-pore domain potassium channel, has emerged as regulator of leukocyte transmigration into the central nervous system. In the context of skeletal muscle, immune cell infiltration constitutes the pathogenic hallmark of idiopathic inflammatory myopathies (IIMs). However, the underlying mechanisms remain to be elucidated. In this study, we investigated the role of K2P2.1 in the autoimmune response of IIMs. We detected K2P2.1 expression in primary skeletal muscle and endothelial cells of murine and human origin. We observed an increased pro-inflammatory cell response, adhesion and transmigration by pharmacological blockade or genetic deletion of K2P2.1 in vitro and in in vivo myositis mouse models. Of note, our findings were not restricted to endothelial cells as skeletal muscle cells with impaired K2P2.1 function also demonstrated a strong pro-inflammatory response. Conversely, these features were abrogated by activation of K2P2.1 and improved the disease course of a myositis mouse model. In humans, K2P2.1 expression was diminished in IIM patients compared to non-diseased controls arguing for the translatability of our findings. In summary, K2P2.1 may regulate the inflammatory response of skeletal muscle. Further research is required to understand whether K2P2.1 could serve as novel therapeutic target.


Assuntos
Células Endoteliais , Miosite , Humanos , Animais , Camundongos , Células Endoteliais/patologia , Miosite/genética , Músculo Esquelético/patologia , Leucócitos/patologia
5.
Neuropathol Appl Neurobiol ; 49(1): e12866, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36519297

RESUMO

AIM: Analysis of cerebrospinal fluid (CSF) is essential for diagnostic workup of patients with neurological diseases and includes differential cell typing. The current gold standard is based on microscopic examination by specialised technicians and neuropathologists, which is time-consuming, labour-intensive and subjective. METHODS: We, therefore, developed an image analysis approach based on expert annotations of 123,181 digitised CSF objects from 78 patients corresponding to 15 clinically relevant categories and trained a multiclass convolutional neural network (CNN). RESULTS: The CNN classified the 15 categories with high accuracy (mean AUC 97.3%). By using explainable artificial intelligence (XAI), we demonstrate that the CNN identified meaningful cellular substructures in CSF cells recapitulating human pattern recognition. Based on the evaluation of 511 cells selected from 12 different CSF samples, we validated the CNN by comparing it with seven board-certified neuropathologists blinded for clinical information. Inter-rater agreement between the CNN and the ground truth was non-inferior (Krippendorff's alpha 0.79) compared with the agreement of seven human raters and the ground truth (mean Krippendorff's alpha 0.72, range 0.56-0.81). The CNN assigned the correct diagnostic label (inflammatory, haemorrhagic or neoplastic) in 10 out of 11 clinical samples, compared with 7-11 out of 11 by human raters. CONCLUSIONS: Our approach provides the basis to overcome current limitations in automated cell classification for routine diagnostics and demonstrates how a visual explanation framework can connect machine decision-making with cell properties and thus provide a novel versatile and quantitative method for investigating CSF manifestations of various neurological diseases.


Assuntos
Aprendizado Profundo , Humanos , Inteligência Artificial , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
6.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L873-L881, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35438000

RESUMO

Weibel's hypothetical three-dimensional (3-D) model in 1966 provided first ultrastructural details into tubular myelin (TM), a unique, complex surfactant subtype found in the hypophase of the alveolar lining layer. Although initial descriptions by electron microscopy (EM) were already published in the 1950s, a uniform morphological differentiation from other intra-alveolar surfactant subtypes is still missing and potential structure-function relationships remain enigmatic. Technical developments in volume EM methods now allow a more detailed reinvestigation, to address unanswered ultrastructural questions, we analyzed ultrathin sections of humanized SP-A1/SP-A2 coexpressing mouse and human lung samples by conventional transmission EM. We combined these two-dimensional (2-D) information with 3-D analysis of single- and dual-axis electron tomography of serial sections for high z-resolution (in a range of a few nanometers) and extended volumes of up to 1 µm total z-information, this study reveals that TM constitutes a heterogeneous surfactant organization mainly comprised of distorted parallel membrane planes with local intersections, which are distributed all over the TM substructure. These intersecting membrane planes form, among other various polygons, the well-known 2-D "lattice", respectively 3-D quadratic tubules, which in many analyzed spots of human alveoli appear to be less abundant than also observed nonconcentric 3-D lamellae, the additional application of serial section electron tomography to conventional transmission EM demonstrates a high heterogeneity of TM membrane networks, which indicates dynamic transformations between its substructures. Our method provides an ideal basis for further in and ex vivo structural analyses of surfactant under various conditions at nanometer scale.


Assuntos
Tomografia com Microscopia Eletrônica , Surfactantes Pulmonares , Animais , Humanos , Pulmão/ultraestrutura , Camundongos , Bainha de Mielina , Tensoativos
7.
Neuropathol Appl Neurobiol ; 48(1): e12731, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33969514

RESUMO

Three consecutive skeletal muscle biopsies during a several months time-frame, showing different degrees of neutral lipid storage. This is highlighted by Oil-red-O stains (D, E, F) and electron microscopy (G, H, I). Note the impact on mitochondrial morphology with so called 'parking lots (K, L). Zooming 'in and out' into the ultrastructure, using the nanotomy platform provides interesting detailled information (http://nanotomy.org). ​.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Musculares , Distrofias Musculares , Humanos , Imunoglobulinas , Erros Inatos do Metabolismo Lipídico/patologia , Músculo Esquelético/patologia , Doenças Musculares/patologia , Doenças Musculares/terapia , Plasmaferese
8.
Acta Neuropathol ; 144(2): 353-372, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612662

RESUMO

Anti-synthetase syndrome (ASyS)-associated myositis is a major subgroup of the idiopathic inflammatory myopathies (IIM) and is characterized by disease chronicity with musculoskeletal, dermatological and pulmonary manifestations. One of eight autoantibodies against the aminoacyl-transferase RNA synthetases (ARS) is detectable in the serum of affected patients. However, disease-specific therapeutic approaches have not yet been established.To obtain a deeper understanding of the underlying pathogenesis and to identify putative therapeutic targets, we comparatively investigated the most common forms of ASyS associated with anti-PL-7, anti-PL-12 and anti-Jo-1. Our cohort consisted of 80 ASyS patients as well as healthy controls (n = 40), diseased controls (n = 40) and non-diseased controls (n = 20). We detected a reduced extent of necrosis and regeneration in muscle biopsies from PL-12+ patients compared to Jo-1+ patients, while PL-7+ patients had higher capillary dropout in biopsies of skeletal muscle. Aside from these subtle alterations, no significant differences between ASyS subgroups were observed. Interestingly, a tissue-specific subpopulation of CD138+ plasma cells and CXCL12+/CXCL13+CD20+ B cells common to ASyS myositis were identified. These cells were localized in the endomysium associated with alkaline phosphatase+ activated mesenchymal fibroblasts and CD68+MHC-II+CD169+ macrophages. An MHC-I+ and MHC-II+ MxA negative type II interferon-driven milieu of myofiber activation, topographically restricted to the perifascicular area and the adjacent perimysium, as well as perimysial clusters of T follicular helper cells defined an extra-medullary immunological niche for plasma cells and activated B cells. Consistent with this, proteomic analyses of muscle tissues from ASyS patients demonstrated alterations in antigen processing and presentation. In-depth immunological analyses of peripheral blood supported a B-cell/plasma-cell-driven pathology with a shift towards immature B cells, an increase of B-cell-related cytokines and chemokines, and activation of the complement system. We hypothesize that a B-cell-driven pathology with the presence and persistence of a specific subtype of plasma cells in the skeletal muscle is crucially involved in the self-perpetuating chronicity of ASyS myositis. This work provides the conceptual framework for the application of plasma-cell-targeting therapies in ASyS myositis.


Assuntos
Ligases , Miosite , Autoanticorpos , Humanos , Músculo Esquelético/patologia , Miosite/complicações , Miosite/patologia , Plasmócitos , Proteômica
9.
Acta Neuropathol ; 141(6): 917-927, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33864496

RESUMO

Systemic sclerosis represents a chronic connective tissue disease featuring fibrosis, vasculopathy and autoimmunity, affecting skin, multiple internal organs, and skeletal muscles. The vasculopathy is considered obliterative, but its pathogenesis is still poorly understood. This may partially be due to limitations of conventional transmission electron microscopy previously being conducted only in single patients. The aim of our study was therefore to precisely characterize immune inflammatory features and capillary morphology of systemic sclerosis patients suffering from muscle weakness. In this study, we identified 18 individuals who underwent muscle biopsy because of muscle weakness and myalgia in a cohort of 367 systemic sclerosis patients. We performed detailed conventional and immunohistochemical analysis and large-scale electron microscopy by digitizing entire sections for in-depth ultrastructural analysis. Muscle biopsies of 12 of these 18 patients (67%) presented minimal features of myositis but clear capillary alteration, which we termed minimal myositis with capillary pathology (MMCP). Our study provides novel findings in systemic sclerosis-associated myositis. First, we identified a characteristic and specific morphological pattern termed MMCP in 67% of the cases, while the other 33% feature alterations characteristic of other overlap syndromes. This is also reflected by a relatively homogeneous clinical picture among MMCP patients. They have milder disease with little muscle weakness and a low prevalence of interstitial lung disease (20%) and diffuse skin involvement (10%) and no cases of either pulmonary arterial hypertension or renal crisis. Second, large-scale electron microscopy, introducing a new level of precision in ultrastructural analysis, revealed a characteristic capillary morphology with basement membrane thickening and reduplications, endothelial activation and pericyte proliferation. We provide open-access pan-and-zoom analysis to our datasets, enabling critical discussion and data mining. We clearly highlight characteristic capillary pathology in skeletal muscles of systemic sclerosis patients.


Assuntos
Capilares/patologia , Debilidade Muscular/fisiopatologia , Músculo Esquelético/patologia , Miosite/patologia , Escleroderma Sistêmico/patologia , Adulto , Idoso , Biópsia , Estudos de Coortes , Feminino , Humanos , Inflamação , Masculino , Microscopia Eletrônica de Transmissão/instrumentação , Pessoa de Meia-Idade , Miosite/imunologia , Escleroderma Sistêmico/imunologia
10.
Acta Neuropathol ; 142(6): 1025-1043, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34661724

RESUMO

Pituicytoma (PITUI), granular cell tumor (GCT), and spindle cell oncocytoma (SCO) are rare tumors of the posterior pituitary. Histologically, they may be challenging to distinguish and have been proposed to represent a histological spectrum of a single entity. We performed targeted next-generation sequencing, DNA methylation profiling, and copy number analysis on 47 tumors (14 PITUI; 12 GCT; 21 SCO) to investigate molecular features and explore possibilities of clinically meaningful tumor subclassification. We detected two main epigenomic subgroups by unsupervised clustering of DNA methylation data, though the overall methylation differences were subtle. The largest group (n = 23) contained most PITUIs and a subset of SCOs and was enriched for pathogenic mutations within genes in the MAPK/PI3K pathways (12/17 [71%] of sequenced tumors: FGFR1 (3), HRAS (3), BRAF (2), NF1 (2), CBL (1), MAP2K2 (1), PTEN (1)) and two with accompanying TERT promoter mutation. The second group (n = 16) contained most GCTs and a subset of SCOs, all of which mostly lacked identifiable genetic drivers. Outcome analysis demonstrated that the presence of chromosomal imbalances was significantly associated with reduced progression-free survival especially within the combined PITUI and SCO group (p = 0.031). In summary, we observed only subtle DNA methylation differences between posterior pituitary tumors, indicating that these tumors may be best classified as subtypes of a single entity. Nevertheless, our data indicate differences in mutation patterns and clinical outcome. For a clinically meaningful subclassification, we propose a combined histo-molecular approach into three subtypes: one subtype is defined by granular cell histology, scarcity of identifiable oncogenic mutations, and favorable outcome. The other two subtypes have either SCO or PITUI histology but are segregated by chromosomal copy number profile into a favorable group (no copy number changes) and a less favorable group (copy number imbalances present). Both of the latter groups have recurrent MAPK/PI3K genetic alterations that represent potential therapeutic targets.


Assuntos
Adenoma Oxífilo/genética , Tumor de Células Granulares/genética , Neoplasias Hipofisárias/genética , Epigênese Genética , Humanos
11.
Microsc Microanal ; 27(4): 815-827, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34266508

RESUMO

Manual selection of targets in experimental or diagnostic samples by transmission electron microscopy (TEM), based on single overview and detail micrographs, has been time-consuming and susceptible to bias. Substantial information and throughput gain may now be achieved by the automated acquisition of virtually all structures in a given EM section. Resulting datasets allow the convenient pan-and-zoom examination of tissue ultrastructure with preserved microanatomical orientation. The technique is, however, critically sensitive to artifacts in sample preparation. We, therefore, established a methodology to prepare large-scale digitization samples (LDS) designed to acquire entire sections free of obscuring flaws. For evaluation, we highlight the supreme performance of scanning EM in transmission mode compared with other EM technology. The use of LDS will substantially facilitate access to EM data for a broad range of applications.


Assuntos
Microscopia Eletrônica de Varredura , Manejo de Espécimes , Células , Microscopia Eletrônica de Transmissão
12.
Am J Physiol Renal Physiol ; 318(1): F216-F228, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31736353

RESUMO

K+ deficiency stimulates renal salt reuptake via the Na+-Cl- cotransporter (NCC) of the distal convoluted tubule (DCT), thereby reducing K+ losses in downstream nephron segments while increasing NaCl retention and blood pressure. NCC activation is mediated by a kinase cascade involving with no lysine (WNK) kinases upstream of Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress-responsive kinase-1 (OSR1). In K+ deficiency, WNKs and SPAK/OSR1 concentrate in spherical cytoplasmic domains in the DCT termed "WNK bodies," the significance of which is undetermined. By feeding diets of varying salt and K+ content to mice and using genetically engineered mouse lines, we aimed to clarify whether WNK bodies contribute to WNK-SPAK/OSR1-NCC signaling. Phosphorylated SPAK/OSR1 was present both at the apical membrane and in WNK bodies within 12 h of dietary K+ deprivation, and it was promptly suppressed by K+ loading. In WNK4-deficient mice, however, larger WNK bodies formed, containing unphosphorylated WNK1, SPAK, and OSR1. This suggests that WNK4 is the primary active WNK isoform in WNK bodies and catalyzes SPAK/OSR1 phosphorylation therein. We further examined mice carrying a kidney-specific deletion of the basolateral K+ channel-forming protein Kir4.1, which is required for the DCT to sense plasma K+ concentration. These mice displayed remnant mosaic expression of Kir4.1 in the DCT, and upon K+ deprivation, WNK bodies developed only in Kir4.1-expressing cells. We postulate a model of DCT function in which NCC activity is modulated by plasma K+ concentration via WNK4-SPAK/OSR1 interactions within WNK bodies.


Assuntos
Hipopotassemia/metabolismo , Rim/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Feminino , Hipopotassemia/sangue , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Potássio/sangue , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
14.
Kidney Int ; 94(3): 625-631, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30143069

RESUMO

Recent progress in electron microscopy (EM) techniques has opened new pathways to study renal tissue in research and pathology. Modern field emission scanning EM may be utilized to scan thin sections of resin-embedded tissue mounted on a conductive support. Here we sought to achieve automated imaging without the typical limitations of transmission EM with equivalent or superior quality. Extended areas of tissue were either imaged in two (nanotomy) or in three dimensions (volume EM) by serial-section-based array tomography. Single-beam and fast-recording multi-beam field emission scanning EM instruments were compared using perfusion-fixed rodent kidneys. High-resolution scans produced excellent images of tissue, cells, and organelles down to macromolecular complexes. Digital stitching of image tiles in both modes allowed seamless Google Earth-like zooming from overview to regions of interest at the nanoscale. Large datasets were created that can be rapidly shared between scientists of different disciplines or pathologists using open source software. Three-dimensional array tomography of thin sections was followed by segmentation to visualize selected features in a large volume. Furthermore, correlative light-EM enabled the identification of functional information in a structural context. Thus, limitations in biomedical transmission EM can be overcome by introducing field emission scanning EM-based technology that permits high-quality, large field-of-view nanotomy, volume EM, and correlative light-EM modes. Advantages of virtual microscopy in clinical and experimental nephrology are illustrated.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Rim/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Imagem Multimodal/métodos , Animais , Camundongos , Nefrologia/métodos , Ratos , Software
17.
J Biol Chem ; 291(2): 681-90, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26582204

RESUMO

A-kinase anchoring proteins (AKAPs) represent a family of structurally diverse proteins, all of which bind PKA. A member of this family is glycogen synthase kinase 3ß (GSK3ß) interaction protein (GSKIP). GSKIP interacts with PKA and also directly interacts with GSK3ß. The physiological function of the GSKIP protein in vivo is unknown. We developed and characterized a conditional knock-out mouse model and found that GSKIP deficiency caused lethality at birth. Embryos obtained through Caesarean section at embryonic day 18.5 were cyanotic, suffered from respiratory distress, and failed to initiate breathing properly. Additionally, all GSKIP-deficient embryos showed an incomplete closure of the palatal shelves accompanied by a delay in ossification along the fusion area of secondary palatal bones. On the molecular level, GSKIP deficiency resulted in decreased phosphorylation of GSK3ß at Ser-9 starting early in development (embryonic day 10.5), leading to enhanced GSK3ß activity. At embryonic day 18.5, GSK3ß activity decreased to levels close to that of wild type. Our findings reveal a novel, crucial role for GSKIP in the coordination of GSK3ß signaling in palatal shelf fusion.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Palato/embriologia , Palato/metabolismo , Proteínas Repressoras/metabolismo , Alelos , Animais , Fissura Palatina/embriologia , Fissura Palatina/enzimologia , Fissura Palatina/patologia , Perda do Embrião/metabolismo , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/enzimologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glicogênio Sintase Quinase 3 beta , Hemizigoto , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Palato/anormalidades , Palato/enzimologia , Fenótipo , Fosforilação , Fosfosserina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/deficiência , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA