Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
JCI Insight ; 9(6)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38516884

RESUMO

Substantial evidence suggests a role for immunotherapy in treating Alzheimer's disease (AD). While the precise pathophysiology of AD is incompletely understood, clinical trials of antibodies targeting aggregated forms of ß amyloid (Aß) have shown that reducing amyloid plaques can mitigate cognitive decline in patients with early-stage AD. Here, we describe what we believe to be a novel approach to target and degrade amyloid plaques by genetically engineering macrophages to express an Aß-targeting chimeric antigen receptor (CAR-Ms). When injected intrahippocampally, first-generation CAR-Ms have limited persistence and fail to significantly reduce plaque load, which led us to engineer next-generation CAR-Ms that secrete M-CSF and self-maintain without exogenous cytokines. Cytokine secreting "reinforced CAR-Ms" have greater survival in the brain niche and significantly reduce plaque load locally in vivo. These findings support CAR-Ms as a platform to rationally target, resorb, and degrade pathogenic material that accumulates with age, as exemplified by targeting Aß in AD.


Assuntos
Doença de Alzheimer , Receptores de Antígenos Quiméricos , Camundongos , Animais , Humanos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Doença de Alzheimer/patologia , Citocinas/metabolismo , Macrófagos/metabolismo
2.
Nat Metab ; 6(2): 359-377, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409323

RESUMO

High protein intake is common in western societies and is often promoted as part of a healthy lifestyle; however, amino-acid-mediated mammalian target of rapamycin (mTOR) signalling in macrophages has been implicated in the pathogenesis of ischaemic cardiovascular disease. In a series of clinical studies on male and female participants ( NCT03946774 and NCT03994367 ) that involved graded amounts of protein ingestion together with detailed plasma amino acid analysis and human monocyte/macrophage experiments, we identify leucine as the key activator of mTOR signalling in macrophages. We describe a threshold effect of high protein intake and circulating leucine on monocytes/macrophages wherein only protein in excess of ∼25 g per meal induces mTOR activation and functional effects. By designing specific diets modified in protein and leucine content representative of the intake in the general population, we confirm this threshold effect in mouse models and find ingestion of protein in excess of ∼22% of dietary energy requirements drives atherosclerosis in male mice. These data demonstrate a mechanistic basis for the adverse impact of excessive dietary protein on cardiovascular risk.


Assuntos
Doenças Cardiovasculares , Humanos , Masculino , Feminino , Camundongos , Animais , Leucina/metabolismo , Leucina/farmacologia , Fatores de Risco , Serina-Treonina Quinases TOR/metabolismo , Macrófagos/metabolismo , Fatores de Risco de Doenças Cardíacas , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA