Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(1): 350-367, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34928380

RESUMO

Although the RNA helicase Upf1 has hitherto been examined mostly in relation to its cytoplasmic role in nonsense mediated mRNA decay (NMD), here we report high-throughput ChIP data indicating genome-wide association of Upf1 with active genes in Schizosaccharomyces pombe. This association is RNase sensitive, correlates with Pol II transcription and mRNA expression levels. Changes in Pol II occupancy were detected in a Upf1 deficient (upf1Δ) strain, prevalently at genes showing a high Upf1 relative to Pol II association in wild-type. Additionally, an increased Ser2 Pol II signal was detected at all highly transcribed genes examined by ChIP-qPCR. Furthermore, upf1Δ cells are hypersensitive to the transcription elongation inhibitor 6-azauracil. A significant proportion of the genes associated with Upf1 in wild-type conditions are also mis-regulated in upf1Δ. These data envisage that by operating on the nascent transcript, Upf1 might influence Pol II phosphorylation and transcription.


Assuntos
RNA Helicases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Fosforilação , RNA Helicases/genética , RNA Polimerase II/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Ativação Transcricional
2.
iScience ; 24(2): 102069, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554071

RESUMO

Glycolysis is a fundamental metabolic pathway for glucose catabolism across biology, and glycolytic enzymes are among the most abundant proteins in cells. Their expression at such levels provides a particular challenge. Here we demonstrate that the glycolytic mRNAs are localized to granules in yeast and human cells. Detailed live cell and smFISH studies in yeast show that the mRNAs are actively translated in granules, and this translation appears critical for the localization. Furthermore, this arrangement is likely to facilitate the higher level organization and control of the glycolytic pathway. Indeed, the degree of fermentation required by cells is intrinsically connected to the extent of mRNA localization to granules. On this basis, we term these granules, core fermentation (CoFe) granules; they appear to represent translation factories, allowing high-level coordinated enzyme synthesis for a critical metabolic pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA