Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Mol Psychiatry ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849515

RESUMO

This study aims to determine whether 1) individuals with treatment-resistant schizophrenia display early cognitive impairment compared to treatment-responders and healthy controls and 2) N-methyl-D-aspartate-receptor hypofunction is an underlying mechanism of cognitive deficits in treatment-resistance. In this case‒control 3-year-follow-up longitudinal study, n = 697 patients with first-episode psychosis, aged 18 to 35, were screened for Treatment Response and Resistance in Psychosis criteria through an algorithm that assigns patients to responder, limited-response or treatment-resistant category (respectively resistant to 0, 1 or 2 antipsychotics). Assessments at baseline: MATRICS Consensus Cognitive Battery; N-methyl-D-aspartate-receptor co-agonists biomarkers in brain by MRS (prefrontal glutamate levels) and plasma (D-serine and glutamate pathways key markers). Patients were compared to age- and sex-matched healthy controls (n = 114). Results: patient mean age 23, 27% female. Treatment-resistant (n = 51) showed lower scores than responders (n = 183) in processing speed, attention/vigilance, working memory, verbal learning and visual learning. Limited responders (n = 59) displayed an intermediary phenotype. Treatment-resistant and limited responders were merged in one group for the subsequent D-serine and glutamate pathway analyses. This group showed D-serine pathway dysregulation, with lower levels of the enzymes serine racemase and serine-hydroxymethyltransferase 1, and higher levels of the glutamate-cysteine transporter 3 than in responders. Better cognition was associated with higher D-serine and lower glutamate-cysteine transporter 3 levels only in responders; this association was disrupted in the treatment resistant group. Treatment resistant patients and limited responders displayed early cognitive and persistent functioning impairment. The dysregulation of NMDAR co-agonist pathways provides underlying molecular mechanisms for cognitive deficits in treatment-resistant first-episode psychosis. If replicated, our findings would open ways to mechanistic biomarkers guiding response-based patient stratification and targeting cognitive improvement in clinical trials.

2.
Mol Psychiatry ; 28(5): 1983-1994, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002404

RESUMO

In view of its heterogeneity, schizophrenia needs new diagnostic tools based on mechanistic biomarkers that would allow early detection. Complex interaction between genetic and environmental risk factors may lead to NMDAR hypofunction, inflammation and redox dysregulation, all converging on oxidative stress. Using computational analysis, the expression of 76 genes linked to these systems, known to be abnormally regulated in schizophrenia, was studied in skin-fibroblasts from early psychosis patients and age-matched controls (N = 30), under additional pro-oxidant challenge to mimic environmental stress. To evaluate the contribution of a genetic risk related to redox dysregulation, we investigated the GAG trinucleotide polymorphism in the key glutathione (GSH) synthesizing enzyme, glutamate-cysteine-ligase-catalytic-subunit (gclc) gene, known to be associated with the disease. Patients and controls showed different gene expression profiles that were modulated by GAG-gclc genotypes in combination with oxidative challenge. In GAG-gclc low-risk genotype patients, a global gene expression dysregulation was observed, especially in the antioxidant system, potentially induced by other risks. Both controls and patients with GAG-gclc high-risk genotype (gclcGAG-HR) showed similar gene expression profiles. However, under oxidative challenge, a boosting of other antioxidant defense, including the master regulator Nrf2 and TRX systems was observed only in gclcGAG-HR controls, suggesting a protective compensation against the genetic GSH dysregulation. Moreover, RAGE (redox/inflammation interaction) and AGMAT (arginine pathway) were increased in the gclcGAG-HR patients, suggesting some additional risk factors interacting with this genotype. Finally, the use of a machine-learning approach allowed discriminating patients and controls with an accuracy up to 100%, paving the way towards early detection of schizophrenia.


Assuntos
Antioxidantes , Transtornos Psicóticos , Humanos , Transcriptoma , Transtornos Psicóticos/genética , Transtornos Psicóticos/metabolismo , Oxirredução , Glutationa/metabolismo , Estresse Oxidativo/genética , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Fibroblastos , Inflamação/metabolismo
3.
Mol Psychiatry ; 28(8): 3171-3181, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37580524

RESUMO

Most mental disorders have a typical onset between 12 and 25 years of age, highlighting the importance of this period for the pathogenesis, diagnosis, and treatment of mental ill-health. This perspective addresses interactions between risk and protective factors and brain development as key pillars accounting for the emergence of psychopathology in youth. Moreover, we propose that novel approaches towards early diagnosis and interventions are required that reflect the evolution of emerging psychopathology, the importance of novel service models, and knowledge exchange between science and practitioners. Taken together, we propose a transformative early intervention paradigm for research and clinical care that could significantly enhance mental health in young people and initiate a shift towards the prevention of severe mental disorders.


Assuntos
Transtornos Mentais , Saúde Mental , Humanos , Adolescente , Transtornos Mentais/terapia , Transtornos Mentais/diagnóstico , Psicopatologia
4.
Mol Psychiatry ; 28(5): 2039-2048, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36806762

RESUMO

Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan's unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = -0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = -0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = -0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = -0.02, p < 0.001) and frontal white matter Glx (z = -0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies.


Assuntos
Ácido Glutâmico , Esquizofrenia , Masculino , Humanos , Ácido Glutâmico/metabolismo , Esquizofrenia/metabolismo , Glutamina/metabolismo , Encéfalo/metabolismo , Espectroscopia de Prótons por Ressonância Magnética
5.
Int J Neuropsychopharmacol ; 26(5): 309-321, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36975001

RESUMO

Redox biology and immune signaling play major roles in the body, including in brain function. A rapidly growing literature also suggests that redox and immune abnormalities are implicated in neuropsychiatric conditions such as schizophrenia (SZ), bipolar disorder, autism, and epilepsy. In this article we review this literature, its implications for the pathophysiology of SZ, and the potential for development of novel treatment interventions targeting redox and immune signaling. Redox biology and immune signaling in the brain are complex and not fully understood; in addition, there are discrepancies in the literature, especially in patient-oriented studies. Nevertheless, it is clear that abnormalities arise in SZ from an interaction between genetic and environmental factors during sensitive periods of brain development, and these abnormalities disrupt local circuits and long-range connectivity. Interventions that correct these abnormalities may be effective in normalizing brain function in psychotic disorders, especially in early phases of illness.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Estresse Oxidativo/fisiologia , Oxirredução
6.
Mol Psychiatry ; 27(4): 2042-2051, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35079122

RESUMO

Impairment of parvalbumin interneurons induced by oxidative stress (OxS) is a "hub" on which converge several genetic and environmental risk factors associated with schizophrenia. In patients, this could be a mechanism leading to anomalies of the thalamic reticular nucleus (TRN) whose major neuronal population expresses parvalbumin. The TRN shapes the information flow within thalamo-cortical circuits. The low-threshold voltage-gated T-type Ca2+ (T-Ca2+) channels (CaV3.2, CaV3.3) contribute to the excitability and rhythmic bursting of TRN neurons which mediates cortical sleep spindles, known to be affected in schizophrenia. Here, we investigated the impact of OxS during postnatal development and adulthood on firing properties and T-Ca2+ channels of TRN neurons. In Gclm knock-out (KO) mice, which display GSH deficit and OxS in TRN, we found a reduction of T-Ca2+ current density in adulthood, but not at peripuberty. In KO adults, the decreased T-Ca2+ currents were accompanied with a decrease of CaV3.3 expression, and a shift towards more hyperpolarized membrane potentials for burst firing leading to less prominent bursting profile. In young KO mice, an early-life oxidative challenge precipitated the hypofunction of T-Ca2+ channels. This was prevented by a treatment with N-acetylcysteine. The concomitant presence of OxS and hypofunction of T-Ca2+ channels were also observed in TRN of a neurodevelopmental model relevant to psychosis (MAM mice). Collectively, these data indicate that OxS-mediated T-Ca2+ hypofunction in TRN begins early in life. This also points to T-Ca2+ channels as one target of antioxidant-based treatments aiming to mitigate abnormal thalamo-cortical communication and pathogenesis of schizophrenia.


Assuntos
Esquizofrenia , Adulto , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Estresse Oxidativo , Parvalbuminas/metabolismo , Núcleos Talâmicos
7.
Mol Psychiatry ; 27(4): 1886-1897, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34759358

RESUMO

A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.


Assuntos
Esquizofrenia , Neurônios GABAérgicos/metabolismo , Humanos , Estresse Oxidativo/fisiologia , Parvalbuminas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/genética
8.
Mol Psychiatry ; 27(11): 4394-4406, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35902628

RESUMO

Schizophrenia is associated with alterations of sensory integration, cognitive processing and both sleep architecture and sleep oscillations in mouse models and human subjects, possibly through changes in thalamocortical dynamics. Oxidative stress (OxS) damage, including inflammation and the impairment of fast-spiking gamma-aminobutyric acid neurons have been hypothesized as a potential mechanism responsible for the onset and development of schizophrenia. Yet, the link between OxS and perturbation of thalamocortical dynamics and sleep remains unclear. Here, we sought to investigate the effects of OxS on sleep regulation by characterizing the dynamics of thalamocortical networks across sleep-wake states in a mouse model with a genetic deletion of the modifier subunit of glutamate-cysteine ligase (Gclm knockout, KO) using high-density electrophysiology in freely-moving mice. We found that Gcml KO mice exhibited a fragmented sleep architecture and impaired sleep homeostasis responses as revealed by the increased NREM sleep latencies, decreased slow-wave activities and spindle rate after sleep deprivation. These changes were associated with altered bursting activity and firing dynamics of neurons from the thalamic reticularis nucleus, anterior cingulate and anterodorsal thalamus. Administration of N-acetylcysteine (NAC), a clinically relevant antioxidant, rescued the sleep fragmentation and spindle rate through a renormalization of local neuronal dynamics in Gclm KO mice. Collectively, these findings provide novel evidence for a link between OxS and the deficits of frontal TC network dynamics as a possible mechanism underlying sleep abnormalities and impaired homeostatic responses observed in schizophrenia.


Assuntos
Glutamato-Cisteína Ligase , Sono , Camundongos , Humanos , Animais , Sono/fisiologia , Tálamo , Núcleos Talâmicos , Estresse Oxidativo , Córtex Cerebral
9.
Mol Psychiatry ; 27(2): 1192-1204, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34686767

RESUMO

Early detection and intervention in schizophrenia requires mechanism-based biomarkers that capture neural circuitry dysfunction, allowing better patient stratification, monitoring of disease progression and treatment. In prefrontal cortex and blood of redox dysregulated mice (Gclm-KO ± GBR), oxidative stress induces miR-137 upregulation, leading to decreased COX6A2 and mitophagy markers (NIX, Fundc1, and LC3B) and to accumulation of damaged mitochondria, further exacerbating oxidative stress and parvalbumin interneurons (PVI) impairment. MitoQ, a mitochondria-targeted antioxidant, rescued all these processes. Translating to early psychosis patients (EPP), blood exosomal miR-137 increases and COX6A2 decreases, combined with mitophagy markers alterations, suggest that observations made centrally and peripherally in animal model were reflected in patients' blood. Higher exosomal miR-137 and lower COX6A2 levels were associated with a reduction of ASSR gamma oscillations in EEG. As ASSR requires proper PVI-related networks, alterations in miR-137/COX6A2 plasma exosome levels may represent a proxy marker of PVI cortical microcircuit impairment. EPP can be stratified in two subgroups: (a) a patients' group with mitochondrial dysfunction "Psy-D", having high miR-137 and low COX6A2 levels in exosomes, and (b) a "Psy-ND" subgroup with no/low mitochondrial impairment, including patients having miR-137 and COX6A2 levels in the range of controls. Psy-D patients exhibited more impaired ASSR responses in association with worse psychopathological status, neurocognitive performance, and global and social functioning, suggesting that impairment of PVI mitochondria leads to more severe disease profiles. This stratification would allow, with high selectivity and specificity, the selection of patients for treatments targeting brain mitochondria dysregulation and capture the clinical and functional efficacy of future clinical trials.


Assuntos
MicroRNAs , Esquizofrenia , Animais , Biomarcadores/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Interneurônios/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Parvalbuminas/metabolismo , Esquizofrenia/metabolismo
10.
Mol Psychiatry ; 26(12): 7679-7689, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34193975

RESUMO

Recent evidence showed thalamic abnormalities in schizophrenia involving disruptions to the parvalbumin neurons in the thalamic reticular nucleus (TRN). However, their functional consequences, as well as a potential linkage to oxidative stress, are unclear. The TRN is posited to gate prefrontal control of dopamine neuron activity in the ventral tegmental area (VTA). Thus, we hypothesized that schizophrenia-related TRN abnormalities might contribute to dopamine dysregulation, a well-known feature of the disorder. To test this, in adult rats exposed prenatally to methylazoxymethanol acetate (MAM rats), oxidative impairments to the parvalbumin neurons in the anterior TRN were assessed by immunohistochemistry. Using in vivo electrophysiology, we investigated whether inactivation of the prefrontal cortex would produce differential effects on VTA dopamine neurons in MAM rats. We show that MAM rats displayed reduced markers of parvalbumin and wisteria floribunda agglutinin-labeled perineuronal nets, correlating with increased markers of oxidative stress (8-oxo-7, 8-dihydro-20-deoxyguanosine, and 3-nitrotyrosine). Moreover, MAM rats displayed heightened baseline and abnormal prefrontal control of VTA dopamine neuron activity, as tetrodotoxin-induced inactivation of the infralimbic prefrontal cortex decreased the dopamine population activity, contrary to the normal increase in controls. Such dopamine neuron dysregulation was recapitulated by enzymatic perineuronal net digestion in the TRN of normal rats. Furthermore, juvenile (postnatal day 11-25) antioxidant treatment (N-acetyl-cysteine, 900 mg/L drinking water) prevented all these impairments in MAM rats. Our findings suggest that early accumulation of oxidative stress in the TRN may shape the later onset of schizophrenia pathophysiology, highlighting redox regulation as a potential target for early intervention.


Assuntos
Dopamina , Esquizofrenia , Acetilcisteína/farmacologia , Animais , Modelos Animais de Doenças , Dopamina/farmacologia , Neurônios Dopaminérgicos/fisiologia , Acetato de Metilazoximetanol/farmacologia , Ratos , Núcleos Talâmicos
11.
Mol Psychiatry ; 26(9): 5335-5346, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632207

RESUMO

Early intervention in psychosis is crucial to improving patient response to treatment and the functional deficits that critically affect their long-term quality of life. Stratification tools are needed to personalize functional deficit prevention strategies at an early stage. In the present study, we applied topological tools to analyze symptoms of early psychosis patients, and detected a clear stratification of the cohort into three groups. One of the groups had a significantly better psychosocial outcome than the others after a 3-year clinical follow-up. This group was characterized by a metabolic profile indicative of an activated antioxidant response, while that of the groups with poorer outcome was indicative of oxidative stress. We replicated in a second cohort the finding that the three distinct clinical profiles at baseline were associated with distinct outcomes at follow-up, thus validating the predictive value of this new stratification. This approach could assist in personalizing treatment strategies.


Assuntos
Transtornos Psicóticos , Qualidade de Vida , Humanos
12.
BMC Psychiatry ; 22(1): 758, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463186

RESUMO

BACKGROUND: Sleep spindles have been involved in sleep stabilization and sleep-related memory mechanisms and their deficit emerged as possible biomarker in schizophrenia. However, whether this sleep phenotype is also present in other disorders that share psychotic symptoms remains unclear. To address this gap, we assessed sleep spindles in participants of a prospective population-based cohort who underwent psychiatric assessment (CoLaus|PsyCoLaus) and polysomnographic recording (HypnoLaus). METHODS: Sleep was recorded using ambulatory polysomnography in participants (N = 1037) to the PsyCoLaus study. Sleep spindle parameters were measured in people with a lifelong diagnosis of schizophrenia (SZ), schizoaffective depressive (SAD), schizoaffective manic (SAM), bipolar disorder type I (BP-I) and type II (BP-II). The associations between lifetime diagnostic status (independent variables, SZ, SAD, SAM, BPD-I, BPD-II, controls) and spindle parameters (dependent variables) including density, duration, frequency and maximum amplitude, for all (slow and fast), slow- and fast-spindle were assessed using linear mixed models. Pairwise comparisons of the different spindle parameters between the SZ group and each of the other psychiatric groups was performed using a contrast testing framework from our multiple linear mixed models. RESULTS: Our results showed a deficit in the density and duration of sleep spindles in people with SZ. They also indicated that participants with a diagnosis of SAD, SAM, BP-I and BP-II exhibited different sleep spindle phenotypes. Interestingly, spindle densities and frequencies were different in people with a history of manic symptoms (SAM, BP-I, and BP-II) from those without (SZ, SAD). CONCLUSIONS: Although carried out on a very small number of participants due to the low prevalence of these disorders in general population, this pilot study brought new elements that argued in favor of a deficit of sleep spindles density and duration in people with schizophrenia. In addition, while we could expect a gradual change in intensity of the same sleep spindle parameters through psychotic diagnoses, our results seem to indicate a more complex situation in which the frequency of sleep spindles might be more impacted by diagnoses including a history of mania or hypomania. Further studies with a larger number of participants are required to confirm these effects.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Humanos , Transtorno Bipolar/complicações , Transtorno Bipolar/diagnóstico , Esquizofrenia/complicações , Esquizofrenia/diagnóstico , Projetos Piloto , Estudos Prospectivos , Transtornos Psicóticos/complicações , Transtornos Psicóticos/diagnóstico , Sono
13.
Nat Rev Neurosci ; 17(2): 125-34, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26763624

RESUMO

Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation-inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology.


Assuntos
Encéfalo/metabolismo , Estresse Oxidativo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Animais , Encéfalo/patologia , Humanos , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética
15.
Mol Psychiatry ; 25(11): 2889-2904, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-30911107

RESUMO

Various mechanisms involved in schizophrenia pathophysiology, such as dopamine dysregulation, glutamate/NMDA receptor dysfunction, neuroinflammation or redox imbalance, all appear to converge towards an oxidative stress "hub" affecting parvalbumine interneurones (PVI) and their perineuronal nets (PNN) (Lancet Psychiatry. 2015;2:258-70); (Nat Rev Neurosci. 2016;17:125-34). We aim to investigate underlying mechanisms linking oxidative stress with neuroinflammatory and their long-lasting harmful consequences. In a transgenic mouse of redox dysregulation carrying a permanent deficit of glutathione synthesis (gclm-/-), the anterior cingulate cortex presented early in the development increased oxidative stress which was prevented by the antioxidant N-acetylcysteine (Eur J Neurosci. 2000;12:3721-8). This oxidative stress induced microglia activation and redox-sensitive matrix metalloproteinase 9 (MMP9) stimulation, leading to the receptor for advanced glycation end-products (RAGE) shedding into soluble and nuclear forms, and subsequently to nuclear factor-kB (NF-kB) activation and secretion of various cytokines. Blocking MMP9 activation prevented this sequence of alterations and rescued the normal maturation of PVI/PNN, even if performed after an additional insult that exacerbated the long term PVI/PNN impairments. MMP9 inhibition thus appears to be able to interrupt the vicious circle that maintains the long-lasting deleterious effects of the reciprocal interaction between oxidative stress and neuroinflammation, impacting on PVI/PNN integrity. Translation of these experimental findings to first episode patients revealed an increase in plasma soluble RAGE relative to healthy controls. This increase was associated with low prefrontal GABA levels, potentially predicting a central inhibitory/excitatory imbalance linked to RAGE shedding. This study paves the way for mechanistically related biomarkers needed for early intervention and MMP9/RAGE pathway modulation may lead to promising drug targets.


Assuntos
Inflamação/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neuroimunomodulação , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Esquizofrenia/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Oxirredução , Estresse Oxidativo
16.
Proc Natl Acad Sci U S A ; 115(49): 12495-12500, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30455310

RESUMO

Exposure to childhood trauma (CT) increases the risk for psychosis and affects the development of brain structures, possibly through oxidative stress. As oxidative stress is also linked to psychosis, it may interact with CT, leading to a more severe clinical phenotype. In 133 patients with early psychosis (EPP), we explored the relationships between CT and hippocampal, amygdala, and intracranial volume (ICV); blood antioxidant defenses [glutathione peroxidase (GPx) and thioredoxin/peroxiredoxin (Trx/Prx)]; psychopathological results; and neuropsychological results. Nonadjusted hippocampal volume correlated negatively with GPx activity in patients with CT, but not in patients without CT. In patients with CT with high GPx activity (high-GPx+CT), hippocampal volume was decreased compared with that in patients with low-GPx+CT and patients without CT, who had similar hippocampal volumes. Patients with high-GPx+CT had more severe positive and disorganized symptoms than other patients. Interestingly, Trx and oxidized Prx levels correlated negatively with GPx only in patients with low-GPx+CT. Moreover, patients with low-GPx+CT performed better than other patients on cognitive tasks. Discriminant analysis combining redox markers, hippocampal volume, clinical scores, and cognitive scores allowed for stratification of the patients into subgroups. In conclusion, traumatized EPP with high peripheral oxidation status (high-GPx activity) had smaller hippocampal volumes and more severe symptoms, while those with lower oxidation status (low-GPx activity) showed better cognition and regulation of GPx and Trx/Prx systems. These results suggest that maintained regulation of various antioxidant systems allowed for compensatory mechanisms preventing long-term neuroanatomical and clinical impacts. The redox marker profile may thus represent important biomarkers for defining treatment strategies in patients with psychosis.


Assuntos
Estresse Oxidativo , Transtornos Psicóticos/etiologia , Ferimentos e Lesões/complicações , Adulto , Antioxidantes , Criança , Feminino , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Masculino , Oxirredução , Peroxirredoxinas , Tiorredoxinas , Adulto Jovem
17.
Hum Brain Mapp ; 41(14): 4041-4061, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33448519

RESUMO

The structural complexity of the thalamus, due to its mixed composition of gray and white matter, make it challenging to disjoint and quantify each tissue contribution to the thalamic anatomy. This work promotes the use of partial-volume-based over probabilistic-based tissue segmentation approaches to better capture thalamic gray matter differences between patients at different stages of psychosis (early and chronic) and healthy controls. The study was performed on a cohort of 23 patients with schizophrenia, 41 with early psychosis and 69 age and sex-matched healthy subjects. Six tissue segmentation approaches were employed to obtain the gray matter concentration/probability images. The statistical tests were applied at three different anatomical scales: whole thalamus, thalamic subregions and voxel-wise. The results suggest that the partial volume model estimation of gray matter is more sensitive to detect atrophies within the thalamus of patients with psychosis. However all the methods detected gray matter deficit in the pulvinar, particularly in early stages of psychosis. This study demonstrates also that the gray matter decrease varies nonlinearly with age and between nuclei. While a gray matter loss was found in the pulvinar of patients in both stages of psychosis, reduced gray matter in the mediodorsal was only observed in early psychosis subjects. Finally, our analyses point to alterations in a sub-region comprising the lateral posterior and ventral posterior nuclei. The obtained results reinforce the hypothesis that thalamic gray matter assessment is more reliable when the tissues segmentation method takes into account the partial volume effect.


Assuntos
Substância Cinzenta/patologia , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Transtornos Psicóticos/patologia , Esquizofrenia/patologia , Núcleos Talâmicos/patologia , Adulto , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Transtornos Psicóticos/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Fatores de Tempo , Adulto Jovem
18.
Magn Reson Med ; 83(6): 1895-1908, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31729080

RESUMO

PURPOSE: This assesses the potential of measuring lactate in the human brain using three non-editing MRS methods at 7T and compares the accuracy and precision of the methods. METHODS: 1 H MRS data were measured in the right dorsolateral prefrontal cortex using a semi-adiabatic spin-echo full-intensity acquired localized sequence with three different protocols: (I) TE = 16 ms, (II) TE = 110 ms, and (III) TE = 16 ms, TI = 300 ms. T1 and T2 relaxation times of lactate were also measured. Simulated spectra were generated for three protocols with known concentrations, using a range of spectral linewidths and SNRs to assess the effect of data quality on the measurement precision and accuracy. RESULTS: Lactate was quantified in all three protocols with mean Cramér-Rao lower bound of 8% (I), 13% (II), and 7% (III). The T1 and T2 relaxation times of lactate were 1.9 ± 0.2 s and 94 ± 13 ms, respectively. Simulations predicted a spectral linewidth-associated underestimation of lactate measurement. Simulations, phantom and in vivo results showed that protocol II was most affected by this underestimation. In addition, the estimation error was insensitive to a broad range of spectral linewidth with protocol I. Within-session coefficient of variances of lactate were 6.1 ± 7.9% (I), 22.3 ± 12.3% (II), and 5.1 ± 5.4% (III), respectively. CONCLUSION: We conclude that protocols I and III have the potential to measure lactate at 7T with good reproducibility, whereas the measurement accuracy and precision depend on spectral linewidth and SNR, respectively. Moreover, simulation is valuable for the optimization of measurement protocols in future study design and the correction for measurement bias.


Assuntos
Encéfalo , Córtex Pré-Frontal , Humanos , Lactatos , Espectroscopia de Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem , Reprodutibilidade dos Testes
19.
Int J Neuropsychopharmacol ; 22(8): 478-487, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283822

RESUMO

BACKGROUND: There is increasing evidence that redox dysregulation, which can lead to oxidative stress and eventually to impairment of oligodendrocytes and parvalbumin interneurons, may underlie brain connectivity alterations in schizophrenia. Accordingly, we previously reported that levels of brain antioxidant glutathione in the medial prefrontal cortex were positively correlated with increased functional connectivity along the cingulum bundle in healthy controls but not in early psychosis patients. In a recent randomized controlled trial, we observed that 6-month supplementation with a glutathione precursor, N-acetyl-cysteine, increased brain glutathione levels and improved symptomatic expression and processing speed. METHODS: We investigated the effect of N-acetyl-cysteine supplementation on the functional connectivity between regions of the cingulate cortex, which have been linked to positive symptoms and processing speed decline. In this pilot study, we compared structural connectivity and resting-state functional connectivity between early psychosis patients treated with 6-month N-acetyl-cysteine (n = 9) or placebo (n = 11) supplementation with sex- and age-matched healthy control subjects (n = 74). RESULTS: We observed that 6-month N-acetyl-cysteine supplementation increases functional connectivity along the cingulum and more precisely between the caudal anterior part and the isthmus of the cingulate cortex. These functional changes can be partially explained by an increase of centrality of these regions in the functional brain network. CONCLUSIONS: N-acetyl-cysteine supplementation has a positive effect on functional connectivity within the cingulate cortex in early psychosis patients. To our knowledge, this is the first study suggesting that increased brain glutathione levels via N-acetyl-cysteine supplementation may improve brain functional connectivity.


Assuntos
Acetilcisteína/uso terapêutico , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Giro do Cíngulo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Psicóticos/tratamento farmacológico , Acetilcisteína/efeitos adversos , Adulto , Antioxidantes/efeitos adversos , Mapeamento Encefálico/métodos , Suplementos Nutricionais/efeitos adversos , Método Duplo-Cego , Europa (Continente) , Feminino , Glutationa/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Projetos Piloto , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/psicologia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
20.
Mol Psychiatry ; 23(10): 2057-2065, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29180672

RESUMO

Growing evidence points to a disruption of cortico-thalamo-cortical circuits in schizophrenia (SZ) and bipolar disorder (BD). Clues for a specific involvement of the thalamic reticular nucleus (TRN) come from its unique neuronal characteristics and neural connectivity, allowing it to shape the thalamo-cortical information flow. A direct involvement of the TRN in SZ and BD has not been tested thus far. We used a combination of human postmortem and rodent studies to test the hypothesis that neurons expressing parvalbumin (PV neurons), a main TRN neuronal population, and associated Wisteria floribunda agglutinin-labeled perineuronal nets (WFA/PNNs) are altered in SZ and BD, and that these changes may occur early in the course of the disease as a consequence of oxidative stress. In both disease groups, marked decreases of PV neurons (immunoreactive for PV) and WFA/PNNs were observed in the TRN, with no effects of duration of illness or age at onset. Similarly, in transgenic mice with redox dysregulation, numbers of PV neurons and WFA/PNN+PV neurons were decreased in transgenic compared with wild-type mice; these changes were present at postnatal day (P) 20 for PV neurons and P40 for WFA/PNN+PV neurons, accompanied by alterations of their firing properties. These results show profound abnormalities of PV neurons in the TRN of subjects with SZ and BD, and offer support for the hypothesis that oxidative stress may play a key role in impacting TRN PV neurons at early stages of these disorders. We put forth that these TRN abnormalities may contribute to disruptions of sleep spindles, focused attention and emotion processing in these disorders.


Assuntos
Transtorno Bipolar/fisiopatologia , Esquizofrenia/fisiopatologia , Núcleos Talâmicos/fisiopatologia , Animais , Transtorno Bipolar/metabolismo , Encéfalo/fisiopatologia , Feminino , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Rede Nervosa/metabolismo , Estresse Oxidativo/fisiologia , Parvalbuminas/metabolismo , Parvalbuminas/fisiologia , Esquizofrenia/metabolismo , Tálamo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA