Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
N Engl J Med ; 388(8): 706-718, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36812434

RESUMO

BACKGROUND: Moderate-to-severe hemophilia B is treated with lifelong, continuous coagulation factor IX replacement to prevent bleeding. Gene therapy for hemophilia B aims to establish sustained factor IX activity, thereby protecting against bleeding without burdensome factor IX replacement. METHODS: In this open-label, phase 3 study, after a lead-in period (≥6 months) of factor IX prophylaxis, we administered one infusion of adeno-associated virus 5 (AAV5) vector expressing the Padua factor IX variant (etranacogene dezaparvovec; 2×1013 genome copies per kilogram of body weight) to 54 men with hemophilia B (factor IX activity ≤2% of the normal value) regardless of preexisting AAV5 neutralizing antibodies. The primary end point was the annualized bleeding rate, evaluated in a noninferiority analysis comparing the rate during months 7 through 18 after etranacogene dezaparvovec treatment with the rate during the lead-in period. Noninferiority of etranacogene dezaparvovec was defined as an upper limit of the two-sided 95% Wald confidence interval of the annualized bleeding rate ratio that was less than the noninferiority margin of 1.8. Superiority, additional efficacy measures, and safety were also assessed. RESULTS: The annualized bleeding rate decreased from 4.19 (95% confidence interval [CI], 3.22 to 5.45) during the lead-in period to 1.51 (95% CI, 0.81 to 2.82) during months 7 through 18 after treatment, for a rate ratio of 0.36 (95% Wald CI, 0.20 to 0.64; P<0.001), demonstrating noninferiority and superiority of etranacogene dezaparvovec as compared with factor IX prophylaxis. Factor IX activity had increased from baseline by a least-squares mean of 36.2 percentage points (95% CI, 31.4 to 41.0) at 6 months and 34.3 percentage points (95% CI, 29.5 to 39.1) at 18 months after treatment, and usage of factor IX concentrate decreased by a mean of 248,825 IU per year per participant in the post-treatment period (P<0.001 for all three comparisons). Benefits and safety were observed in participants with predose AAV5 neutralizing antibody titers of less than 700. No treatment-related serious adverse events occurred. CONCLUSIONS: Etranacogene dezaparvovec gene therapy was superior to prophylactic factor IX with respect to the annualized bleeding rate, and it had a favorable safety profile. (Funded by uniQure and CSL Behring; HOPE-B ClinicalTrials.gov number, NCT03569891.).


Assuntos
Fator IX , Terapia Genética , Hemofilia B , Humanos , Masculino , Fator IX/genética , Fator IX/uso terapêutico , Terapia Genética/métodos , Hemofilia B/complicações , Hemofilia B/genética , Hemofilia B/terapia , Hemorragia/etiologia , Hemorragia/terapia , Vetores Genéticos/administração & dosagem
2.
Cell ; 145(6): 831-4, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21663789

RESUMO

Induced pluripotent stem cell-derived neurons from patients promise to fill an important niche between studies in humans and model organisms in deciphering mechanisms and identifying therapeutic avenues for neurologic and psychiatric diseases. Recent work begins to tap this potential and also highlights challenges that must be overcome to be fully realized.


Assuntos
Encéfalo/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Animais , Encefalopatias/patologia , Humanos , Transtornos Mentais/patologia , Neurônios/patologia
3.
Cell ; 136(5): 876-90, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19249086

RESUMO

Store-operated Ca(2+) channels activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER) are a major Ca(2+) entry pathway in nonexcitable cells and are essential for T cell activation and adaptive immunity. After store depletion, the ER Ca(2+) sensor STIM1 and the CRAC channel protein Orai1 redistribute to ER-plasma membrane (PM) junctions, but the fundamental issue of how STIM1 activates the CRAC channel at these sites is unresolved. Here, we identify a minimal, highly conserved 107-aa CRAC activation domain (CAD) of STIM1 that binds directly to the N and C termini of Orai1 to open the CRAC channel. Purified CAD forms a tetramer that clusters CRAC channels, but analysis of STIM1 mutants reveals that channel clustering is not sufficient for channel activation. These studies establish a molecular mechanism for store-operated Ca(2+) entry in which the direct binding of STIM1 to Orai1 drives the accumulation and the activation of CRAC channels at ER-PM junctions.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Canais de Cálcio/química , Linhagem Celular , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Proteína ORAI1 , Estrutura Terciária de Proteína , Molécula 1 de Interação Estromal
4.
Cell ; 139(2): 380-92, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19818485

RESUMO

Synapses are asymmetric cellular adhesions that are critical for nervous system development and function, but the mechanisms that induce their formation are not well understood. We have previously identified thrombospondin as an astrocyte-secreted protein that promotes central nervous system (CNS) synaptogenesis. Here, we identify the neuronal thrombospondin receptor involved in CNS synapse formation as alpha2delta-1, the receptor for the anti-epileptic and analgesic drug gabapentin. We show that the VWF-A domain of alpha2delta-1 interacts with the epidermal growth factor-like repeats common to all thrombospondins. alpha2delta-1 overexpression increases synaptogenesis in vitro and in vivo and is required postsynaptically for thrombospondin- and astrocyte-induced synapse formation in vitro. Gabapentin antagonizes thrombospondin binding to alpha2delta-1 and powerfully inhibits excitatory synapse formation in vitro and in vivo. These findings identify alpha2delta-1 as a receptor involved in excitatory synapse formation and suggest that gabapentin may function therapeutically by blocking new synapse formation.


Assuntos
Antígenos CD36/metabolismo , Canais de Cálcio/metabolismo , Neurogênese , Sinapses , Aminas/farmacologia , Animais , Canais de Cálcio Tipo L , Ácidos Cicloexanocarboxílicos/farmacologia , Gabapentina , Camundongos , Plasticidade Neuronal , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
5.
Mol Ther ; 30(8): 2646-2663, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35690906

RESUMO

On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Vetores Genéticos/genética , Humanos , Camundongos , Mutagênese Insercional , Plasmídeos , Transgenes , Integração Viral
6.
Annu Rev Neurosci ; 37: 479-501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25002278

RESUMO

Recent advances in cell reprogramming enable investigators to generate pluripotent stem cells from somatic cells. These induced pluripotent cells can subsequently be differentiated into any cell type, making it possible for the first time to obtain functional human neurons in the lab from control subjects and patients with psychiatric disorders. In this review, we survey the progress made in generating various neuronal subtypes in vitro, with special emphasis on the characterization of these neurons and the identification of unique features of human brain development in a dish. We also discuss efforts to uncover neuronal phenotypes from patients with psychiatric disease and prospects for the use of this platform for drug development.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Transtornos Mentais/fisiopatologia , Doenças do Sistema Nervoso/fisiopatologia , Neurogênese/fisiologia , Neurônios/citologia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Transtornos Mentais/patologia , Doenças do Sistema Nervoso/patologia , Neurônios/patologia
7.
Genes Dev ; 27(11): 1217-22, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23752588

RESUMO

The signals regulating stem cell activation during tissue regeneration remain poorly understood. We investigated the baldness associated with mutations in the voltage-gated calcium channel (VGCC) Cav1.2 underlying Timothy syndrome (TS). While hair follicle stem cells express Cav1.2, they lack detectable voltage-dependent calcium currents. Cav1.2(TS) acts in a dominant-negative manner to markedly delay anagen, while L-type channel blockers act through Cav1.2 to induce anagen and overcome the TS phenotype. Cav1.2 regulates production of the bulge-derived BMP inhibitor follistatin-like1 (Fstl1), derepressing stem cell quiescence. Our findings show how channels act in nonexcitable tissues to regulate stem cells and may lead to novel therapeutics for tissue regeneration.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Folículo Piloso/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Transtorno Autístico , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/efeitos dos fármacos , Proteínas Relacionadas à Folistatina/biossíntese , Proteínas Relacionadas à Folistatina/metabolismo , Síndrome do QT Longo/metabolismo , Camundongos , Células-Tronco/efeitos dos fármacos , Sindactilia/metabolismo
8.
Nature ; 503(7475): 267-71, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24132240

RESUMO

Phelan-McDermid syndrome (PMDS) is a complex neurodevelopmental disorder characterized by global developmental delay, severely impaired speech, intellectual disability, and an increased risk of autism spectrum disorders (ASDs). PMDS is caused by heterozygous deletions of chromosome 22q13.3. Among the genes in the deleted region is SHANK3, which encodes a protein in the postsynaptic density (PSD). Rare mutations in SHANK3 have been associated with idiopathic ASDs, non-syndromic intellectual disability, and schizophrenia. Although SHANK3 is considered to be the most likely candidate gene for the neurological abnormalities in PMDS patients, the cellular and molecular phenotypes associated with this syndrome in human neurons are unknown. We generated induced pluripotent stem (iPS) cells from individuals with PMDS and autism and used them to produce functional neurons. We show that PMDS neurons have reduced SHANK3 expression and major defects in excitatory, but not inhibitory, synaptic transmission. Excitatory synaptic transmission in PMDS neurons can be corrected by restoring SHANK3 expression or by treating neurons with insulin-like growth factor 1 (IGF1). IGF1 treatment promotes formation of mature excitatory synapses that lack SHANK3 but contain PSD95 and N-methyl-D-aspartate (NMDA) receptors with fast deactivation kinetics. Our findings provide direct evidence for a disruption in the ratio of cellular excitation and inhibition in PMDS neurons, and point to a molecular pathway that can be recruited to restore it.


Assuntos
Transtornos Cromossômicos/fisiopatologia , Fator de Crescimento Insulin-Like I/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Linhagem Celular , Criança , Deleção Cromossômica , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 22/genética , Feminino , GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lentivirus/genética , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Receptores de Glutamato/genética , Deleção de Sequência , Sinapses/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
9.
Nature ; 471(7337): 230-4, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21307850

RESUMO

Individuals with congenital or acquired prolongation of the QT interval, or long QT syndrome (LQTS), are at risk of life-threatening ventricular arrhythmia. LQTS is commonly genetic in origin but can also be caused or exacerbated by environmental factors. A missense mutation in the L-type calcium channel Ca(V)1.2 leads to LQTS in patients with Timothy syndrome. To explore the effect of the Timothy syndrome mutation on the electrical activity and contraction of human cardiomyocytes, we reprogrammed human skin cells from Timothy syndrome patients to generate induced pluripotent stem cells, and differentiated these cells into cardiomyocytes. Electrophysiological recording and calcium (Ca(2+)) imaging studies of these cells revealed irregular contraction, excess Ca(2+) influx, prolonged action potentials, irregular electrical activity and abnormal calcium transients in ventricular-like cells. We found that roscovitine, a compound that increases the voltage-dependent inactivation of Ca(V)1.2 (refs 6-8), restored the electrical and Ca(2+) signalling properties of cardiomyocytes from Timothy syndrome patients. This study provides new opportunities for studying the molecular and cellular mechanisms of cardiac arrhythmias in humans, and provides a robust assay for developing new drugs to treat these diseases.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Potenciais de Ação/efeitos dos fármacos , Transtorno Autístico , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Transdiferenciação Celular , Reprogramação Celular/genética , Fibroblastos/citologia , Células HEK293 , Humanos , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/patologia , Mutação de Sentido Incorreto/genética , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Purinas/farmacologia , Roscovitina , Análise de Célula Única , Sindactilia/tratamento farmacológico , Sindactilia/genética , Sindactilia/metabolismo , Sindactilia/patologia
10.
Nature ; 476(7359): 228-31, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21753754

RESUMO

Neurogenic transcription factors and evolutionarily conserved signalling pathways have been found to be instrumental in the formation of neurons. However, the instructive role of microRNAs (miRNAs) in neurogenesis remains unexplored. We recently discovered that miR-9* and miR-124 instruct compositional changes of SWI/SNF-like BAF chromatin-remodelling complexes, a process important for neuronal differentiation and function. Nearing mitotic exit of neural progenitors, miR-9* and miR-124 repress the BAF53a subunit of the neural-progenitor (np)BAF chromatin-remodelling complex. After mitotic exit, BAF53a is replaced by BAF53b, and BAF45a by BAF45b and BAF45c, which are then incorporated into neuron-specific (n)BAF complexes essential for post-mitotic functions. Because miR-9/9* and miR-124 also control multiple genes regulating neuronal differentiation and function, we proposed that these miRNAs might contribute to neuronal fates. Here we show that expression of miR-9/9* and miR-124 (miR-9/9*-124) in human fibroblasts induces their conversion into neurons, a process facilitated by NEUROD2. Further addition of neurogenic transcription factors ASCL1 and MYT1L enhances the rate of conversion and the maturation of the converted neurons, whereas expression of these transcription factors alone without miR-9/9*-124 was ineffective. These studies indicate that the genetic circuitry involving miR-9/9*-124 can have an instructive role in neural fate determination.


Assuntos
Diferenciação Celular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , MicroRNAs/genética , Neurônios/citologia , Neurônios/metabolismo , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Linhagem Celular , Linhagem da Célula/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Recém-Nascido , MicroRNAs/metabolismo , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tubulina (Proteína)/análise , Tubulina (Proteína)/metabolismo
11.
EMBO J ; 31(18): 3730-44, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22892567

RESUMO

Calcium current through voltage-gated calcium channels (VGCC) controls gene expression. Here, we describe a novel signalling pathway in which the VGCC Cacnb4 subunit directly couples neuronal excitability to transcription. Electrical activity induces Cacnb4 association to Ppp2r5d, a regulatory subunit of PP2A phosphatase, followed by (i) nuclear translocation of Cacnb4/Ppp2r5d/PP2A, (ii) association with the tyrosine hydroxylase (TH) gene promoter through the nuclear transcription factor thyroid hormone receptor alpha (TRα), and (iii) histone binding through association of Cacnb4 with HP1γ concomitantly with Ser(10) histone H3 dephosphorylation by PP2A. This signalling cascade leads to TH gene repression by Cacnb4 and is controlled by the state of interaction between the SH3 and guanylate kinase (GK) modules of Cacnb4. The human R482X CACNB4 mutation, responsible for a form of juvenile myoclonic epilepsy, prevents association with Ppp2r5 and nuclear targeting of the complex by altering Cacnb4 conformation. These findings demonstrate that an intact VGCC subunit acts as a repressor recruiting platform to control neuronal gene expression.


Assuntos
Canais de Cálcio/biossíntese , Canais de Cálcio/genética , Epilepsias Mioclônicas/metabolismo , Regulação da Expressão Gênica , Transporte Ativo do Núcleo Celular , Animais , Biofísica/métodos , Canais de Cálcio/metabolismo , Eletrofisiologia/métodos , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Camundongos , Mutação , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Receptores alfa dos Hormônios Tireóideos/metabolismo , Transcrição Gênica
12.
Neuroimage ; 114: 328-37, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25936696

RESUMO

Despite the potential of stem cell-derived neural transplants for treating intractable neurological diseases, the global effects of a transplant's electrical activity on host circuitry have never been measured directly, preventing the systematic optimization of such therapies. Here, we overcome this problem by combining optogenetics, stem cell biology, and neuroimaging to directly map stem cell-driven neural circuit formation in vivo. We engineered human induced pluripotent stem cells (iPSCs) to express channelrhodopsin-2 and transplanted resulting neurons to striatum of rats. To non-invasively visualize the function of newly formed circuits, we performed high-field functional magnetic resonance imaging (fMRI) during selective stimulation of transplanted cells. fMRI successfully detected local and remote neural activity, enabling the global graft-host neural circuit function to be assessed. These results demonstrate the potential of a novel neuroimaging-based platform that can be used to identify how a graft's electrical activity influences the brain network in vivo.


Assuntos
Corpo Estriado/fisiologia , Xenoenxertos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Animais , Encéfalo/fisiologia , Mapeamento Encefálico , Corpo Estriado/cirurgia , Células-Tronco Embrionárias/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Optogenética , Ratos
13.
Blood Adv ; 7(19): 5671-5679, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36490302

RESUMO

Etranacogene dezaparvovec (AMT-061) is a recombinant adeno-associated virus serotype 5 (AAV5) vector containing a codon-optimized Padua variant human factor IX (FIX) transgene with a liver-specific promoter. Here, we report 3-year outcomes from a phase 2b, open-label, single-dose, single-arm, multicenter trial conducted among adults with severe or moderately severe hemophilia B (FIX ≤2%). All participants (n = 3) received a single intravenous dose (2 × 1013 gene copies per kg) and will be followed up for 5 years. The primary end point of FIX activity ≥5% at 6 weeks was met. Secondary end points included bleed frequency, FIX concentrate use, joint health, and adverse events (AEs). All participants required routine FIX prophylaxis and had neutralizing antibodies to AAV5 before etranacogene dezaparvovec treatment. After administration, FIX activity rose to a mean of 40.8% in year 1 and was sustained in year 3 at 36.9%. All participants discontinued FIX prophylaxis. Bleeding was completely eliminated in 2 out of 3 participants. One participant required on-demand FIX replacement therapy per protocol because of elective surgical procedures, for 2 reported bleeding episodes, and twice for a single self-administered infusion because of an unreported reason. One participant experienced 2 mild, self-limiting AEs shortly after dosing. During the 3-year study period, there were no clinically significant elevations in liver enzymes, no requirement for steroids, no FIX inhibitor development, and no late-emergent safety events in any participant. Etranacogene dezaparvovec was safe and effective in adults with hemophilia B over 3 years after administration. This trial was registered at www.clinicaltrials.gov as #NCT03489291.


Assuntos
Hemofilia B , Adulto , Humanos , Dependovirus/genética , Fator IX/genética , Terapia Genética/métodos , Hemofilia B/tratamento farmacológico , Hemofilia B/genética , Hemorragia/etiologia
14.
ACS Chem Neurosci ; 14(22): 3993-4012, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37903506

RESUMO

Copy number variants (CNVs) that delete or duplicate 30 genes within the 16p11.2 genomic region give rise to a range of neurodevelopmental phenotypes with high penetrance in humans. Despite the identification of this small region, the mechanisms by which 16p11.2 CNVs lead to disease are unclear. Relevant models, such as human cortical organoids (hCOs), are needed to understand the human-specific mechanisms of neurodevelopmental disease. We generated hCOs from 17 patients and controls, profiling 167,958 cells with single-cell RNA-sequencing analysis, which revealed neuronal-specific differential expression of genes outside the 16p11.2 region that are related to cell-cell adhesion, neuronal projection growth, and neurodevelopmental disorders. Furthermore, 16p11.2 deletion syndrome organoids exhibited reduced mRNA and protein levels of RBFOX1, a gene that can also harbor CNVs linked to neurodevelopmental phenotypes. We found that the genes previously shown to be regulated by RBFOX1 are also perturbed in organoids from patients with the 16p11.2 deletion syndrome and thus identified a novel link between independent CNVs associated with neuronal development and autism. Overall, this work suggests convergent signaling, which indicates the possibility of a common therapeutic mechanism across multiple rare neuronal diseases.


Assuntos
Deleção Cromossômica , Variações do Número de Cópias de DNA , Humanos , Variações do Número de Cópias de DNA/genética , Encéfalo , Fenótipo , Organoides , Fatores de Processamento de RNA/genética
15.
Proc Natl Acad Sci U S A ; 106(36): 15495-500, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19706428

RESUMO

Ca(2+)-dependent inactivation (CDI) is a key regulator and hallmark of the Ca(2+) release-activated Ca(2+) (CRAC) channel, a prototypic store-operated Ca(2+) channel. Although the roles of the endoplasmic reticulum Ca(2+) sensor STIM1 and the channel subunit Orai1 in CRAC channel activation are becoming well understood, the molecular basis of CDI remains unclear. Recently, we defined a minimal CRAC activation domain (CAD; residues 342-448) that binds directly to Orai1 to activate the channel. Surprisingly, CAD-induced CRAC currents lack fast inactivation, revealing a critical role for STIM1 in this gating process. Through truncations of full-length STIM1, we identified a short domain (residues 470-491) C-terminal to CAD that is required for CDI. This domain contains a cluster of 7 acidic amino acids between residues 475 and 483. Neutralization of aspartate or glutamate pairs in this region either reduced or enhanced CDI, whereas the combined neutralization of six acidic residues eliminated inactivation entirely. Based on bioinformatics predictions of a calmodulin (CaM) binding site on Orai1, we also investigated a role for CaM in CDI. We identified a membrane-proximal N-terminal domain of Orai1 (residues 68-91) that binds CaM in a Ca(2+)-dependent manner and mutations that eliminate CaM binding abrogate CDI. These studies identify novel structural elements of STIM1 and Orai1 that are required for CDI and support a model in which CaM acts in concert with STIM1 and the N terminus of Orai1 to evoke rapid CRAC channel inactivation.


Assuntos
Canais de Cálcio/metabolismo , Calmodulina/metabolismo , Ativação do Canal Iônico/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Linhagem Celular , Biologia Computacional , Primers do DNA/genética , DNA Complementar/genética , Eletrofisiologia , Humanos , Immunoblotting , Imunoprecipitação , Modelos Biológicos , Mutagênese , Proteína ORAI1 , Plasmídeos/genética , Ligação Proteica , Estrutura Terciária de Proteína/genética , Molécula 1 de Interação Estromal , Transfecção
16.
Neurol Clin Pract ; 12(6): e172-e180, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540140

RESUMO

Background and Objectives: Huntington disease (HD) is a rare, inherited, and highly complex neurodegenerative disorder with no currently approved disease-modifying treatments. We investigated the effect of HD on health-related quality of life and other patient-reported outcomes in the Huntington's Disease Burden of Illness (HDBOI) study. Methods: The HDBOI study is a retrospective, cross-sectional study conducted between September 2020 and May 2021 in France, Germany, Italy, Spain, the United Kingdom, and the United States. People with symptomatic onset HD (PwHD) were recruited by their HD-treating physicians and categorized as early (ES), mid (MS), or advanced stage (AS) HD. Physicians provided sociodemographic and clinical information from the participant's medical records in electronic case report forms (eCRF); participants or their proxies completed online Patient Public Involvement Engagement questionnaires (PPIE-P). Patient-reported outcomes included the 5-level EQ-5D version (EQ-5D-5L), Short-Form-(SF)-36 v2 (and SF-6-Dimension [SF-6D] utility), Huntington Quality of Life Instrument (H-QoL-I), and the Work Productivity and Activity Impairment Specific Health Problem. All outcomes were summarized using descriptive statistics, and differences between disease stages were assessed by Kruskal-Wallis tests. Results: A total of 2,094 PwHD were enrolled with completed eCRFs (100%) and PPIE-P forms (n = 482, 23%). Participants' mean age was 47.3 years; they were generally evenly distributed across countries, with the majority being ES (40%) followed by MS (33%) and LS (26%). The mean EQ-5D-5L (n = 336) utility score was 0.59 (SD, 0.27), with the highest mean utility scores [SD] in ES (0.72 [0.22]) followed by MS (0.62 [0.18]) and AS (0.37 [0.30]), p < 0.001. The mean SF-6D score (n = 482) was 0.57 (SD, 0.10), with mean values decreasing with advanced disease (ES, 0.61; MS, 0.56; AS, 0.50, p < 0.001). H-QoL-I mean scores (n = 482) also worsened with more advanced disease, from 0.58 for ES to 0.49 for MS and 0.37 for AS, p < 0.001. Impairment in daily activities and in work productivity also increased with more advanced disease. Overall proxy respondents reported on average worse outcomes than PwHD (self-reported) across all outcomes and disease stages suggesting a possible unawareness of deficits by PwHD. Discussion: The HDBOI study provides new insights into the characteristics and humanistic burden of PwHD and offers a meaningful contribution to this underserved research area.

17.
Nat Commun ; 13(1): 1150, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241644

RESUMO

Huntington's Disease (HD) is a progressive neurodegenerative disorder caused by CAG trinucleotide repeat expansions in exon 1 of the huntingtin (HTT) gene. The mutant HTT (mHTT) protein causes neuronal dysfunction, causing progressive motor, cognitive and behavioral abnormalities. Current treatments for HD only alleviate symptoms, but cerebral spinal fluid (CSF) or central nervous system (CNS) delivery of antisense oligonucleotides (ASOs) or virus vectors expressing RNA-induced silencing (RNAi) moieties designed to induce mHTT mRNA lowering have progressed to clinical trials. Here, we present an alternative disease modifying therapy the orally available, brain penetrant small molecule branaplam. By promoting inclusion of a pseudoexon in the primary transcript, branaplam lowers mHTT protein levels in HD patient cells, in an HD mouse model and in blood samples from Spinal Muscular Atrophy (SMA) Type I patients dosed orally for SMA (NCT02268552). Our work paves the way for evaluating branaplam's utility as an  HD therapy, leveraging small molecule splicing modulators to reduce expression of dominant disease genes by driving pseudoexon inclusion.


Assuntos
Doença de Huntington , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Oligonucleotídeos Antissenso/metabolismo , Expansão das Repetições de Trinucleotídeos
18.
Nat Commun ; 13(1): 3690, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760976

RESUMO

It is unclear how the 22q11.2 deletion predisposes to psychiatric disease. To study this, we generated induced pluripotent stem cells from deletion carriers and controls and utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Here, we show that upon differentiation into neural progenitor cells, the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including autism. In excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common and rare variants. To understand how the deletion contributed to these changes, we defined the minimal protein-protein interaction network that best explains gene expression alterations. We found that many genes in 22q11.2 interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways. Our findings suggest that the 22q11.2 deletion impacts genes that may converge with psychiatric risk loci to influence disease manifestation in each deletion carrier.


Assuntos
Síndrome de DiGeorge , Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Linhagem Celular , Síndrome de DiGeorge/genética , Humanos , Neurônios , RNA , Esquizofrenia/genética
19.
Neuron ; 55(4): 615-32, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17698014

RESUMO

Voltage-gated calcium channels (VGCCs) convert electrical activity into calcium (Ca2+) signals that regulate cellular excitability, differentiation, and connectivity. The magnitude and kinetics of Ca2+ signals depend on the number of VGCCs at the plasma membrane, but little is known about the regulation of VGCC surface expression. We report that electrical activity causes internalization of the L-type Ca2+ channel (LTC) CaV1.2 and that this is mediated by binding to the tumor suppressor eIF3e/Int6 (eukaryotic initiation factor 3 subunit e). Using total internal reflection microscopy, we identify a population of CaV1.2 containing endosomes whose rapid trafficking is strongly regulated by Ca2+. We define a domain in the II-III loop of CaV1.2 that binds eIF3e and is essential for the activity dependence of both channel internalization and endosomal trafficking. These findings provide a mechanism for activity-dependent internalization and trafficking of CaV1.2 and provide a tantalizing link between Ca2+ homeostasis and a mammalian oncogene.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Cálcio/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Dinamina I/genética , Dinamina I/metabolismo , Estimulação Elétrica/métodos , Embrião de Mamíferos , Hipocampo/citologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/efeitos da radiação , Cloreto de Potássio/farmacologia , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Transfecção/métodos , ômega-Conotoxina GVIA/farmacologia
20.
Ann N Y Acad Sci ; 1506(1): 5-17, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342000

RESUMO

Neurodevelopmental neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia, have strong genetic risk components, but the underlying mechanisms have proven difficult to decipher. Rare, high-risk variants may offer an opportunity to delineate the biological mechanisms responsible more clearly for more common idiopathic diseases. Indeed, different rare variants can cause the same behavioral phenotype, demonstrating genetic heterogeneity, while the same rare variant can cause different behavioral phenotypes, demonstrating variable expressivity. These observations suggest convergent underlying biological and neurological mechanisms; identification of these mechanisms may ultimately reveal new therapeutic targets. At the 2021 Keystone eSymposium "Neuropsychiatric and Neurodevelopmental Disorders: Harnessing Rare Variants" a panel of experts in the field described significant progress in genomic discovery and human phenotyping and raised several consistent issues, including the need for detailed natural history studies of rare disorders, the challenges in cohort recruitment, and the importance of viewing phenotypes as quantitative traits that are impacted by rare variants.


Assuntos
Congressos como Assunto/tendências , Variação Genética/genética , Transtornos Mentais/genética , Transtornos do Neurodesenvolvimento/genética , Penetrância , Relatório de Pesquisa , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/psicologia , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA