RESUMO
BACKGROUND AND PURPOSE: This study examined the role of the main vascular cAMP-hydrolysing phosphodiesterases (cAMP-PDE) in the regulation of basal vascular tone and relaxation of rat aorta mediated by ß-adrenoceptors, following heart failure (HF). EXPERIMENTAL APPROACH: Twenty-two weeks after proximal aortic stenosis, to induce HF, or SHAM surgery in rats, we evaluated the expression, activity and function of cAMP-PDE in the descending thoracic aorta. KEY RESULTS: HF rat aortas exhibited signs of endothelial dysfunction, with alterations of the NO pathway, and alteration of PDE3 and PDE4 subtype expression, without changing total aortic cAMP-hydrolytic activity and PDE1, PDE3 and PDE4 activities. Vascular reactivity experiments using PDE inhibitors showed that PDE3 and PDE4 controlled the level of PGF2α -stimulated contraction in SHAM aorta. PDE3 function was partially inhibited by endothelial NO, whereas PDE4 function required a functional endothelium and was under the negative control of PDE3. In HF, PDE3 function was preserved, but its regulation by endothelial NO was altered. PDE4 function was abolished and restored by PDE3 inhibition. In PGF2α -precontracted arteries, ß-adrenoceptor stimulation-induced relaxation in SHAM aorta, which was abolished in the absence of functional endothelium, as well as in HF aortas, but restored after PDE3 inhibition in all unresponsive arteries. CONCLUSIONS AND IMPLICATIONS: Our study underlines the key role of the endothelium in controlling the contribution of smooth muscle PDE to contractile function. In HF, endothelial dysfunction had a major effect on PDE3 function and PDE3 inhibition restored a functional relaxation to ß-adrenoceptor stimulation.
Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/fisiologia , Insuficiência Cardíaca/fisiopatologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Aorta Torácica/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Dinoprosta/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Técnicas In Vitro , Isoproterenol/farmacologia , Masculino , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Quinolonas/farmacologia , RNA Mensageiro/metabolismo , Ratos Wistar , Vasoconstrição/efeitos dos fármacosRESUMO
The purpose of this work was to investigate the potential of α-cyclodextrin combined to soybean oil-based formulations to modulate the release of a model drug, indomethacin. Dry emulsion, naked and coated beads were prepared from the same initial formulation using the same manufacturing process. Dry emulsion was selected to accelerate drug release while beads coated with α-cyclodextrin were designed to sustain it. Indomethacin-loaded systems were prepared, characterised and evaluated in vitro. Pharmacokinetic studies were performed in fasted and fed rats. The presence of the α-cyclodextrin coat was confirmed by confocal microscopy, and an increase of the mass and diameter of the beads. The layer of α-cyclodextrin improved their resistance in simulated gastro-intestinal fluids. In vitro, the dissolution of indomethacin was slower with coated beads than with emulsion and naked beads. Lipid-based formulations showed an increase of relative bioavailability of IND versus Indocid®. Whatever the formulation, greater and faster release of indomethacin was noticed in sodium taurocholate-rich medium and in fed rats. Compared to naked beads, an increased Cp(max) with a shorter T(max) was observed with the emulsion while T(max) and MRT were increased and Cp(max) reduced with the coated beads. Interestingly, formulations based on alpha cyclodextrin and soybean oil can modify the release of a lipophilic drug depending on the system formed.