Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Plant J ; 113(5): 915-933, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36424366

RESUMO

The soybean Rpp1 locus confers resistance to Phakopsora pachyrhizi, causal agent of rust, and resistance is usually dominant over susceptibility. However, dominance of Rpp1-mediated resistance is lost when a resistant genotype (Rpp1 or Rpp1b) is crossed with susceptible line TMG06_0011, and the mechanism of this dominant susceptibility (DS) is unknown. Sequencing the Rpp1 region reveals that the TMG06_0011 Rpp1 locus has a single nucleotide-binding site leucine-rich repeat (NBS-LRR) gene (DS-R), whereas resistant PI 594760B (Rpp1b) is similar to PI 200492 (Rpp1) and has three NBS-LRR resistance gene candidates. Evidence that DS-R is the cause of DS was reflected in virus-induced gene silencing of DS-R in Rpp1b/DS-R or Rpp1/DS-R heterozygous plants with resistance partially restored. In heterozygous Rpp1b/DS-R plants, expression of Rpp1b candidate genes was not significantly altered, indicating no effect of DS-R on transcription. Physical interaction of the DS-R protein with candidate Rpp1b resistance proteins was supported by yeast two-hybrid studies and in silico modeling. Thus, we conclude that suppression of resistance most likely does not occur at the transcript level, but instead probably at the protein level, possibly with Rpp1 function inhibited by binding to the DS-R protein. The DS-R gene was found in other soybean lines, with an estimated allele frequency of 6% in a diverse population, and also found in wild soybean (Glycine soja). The identification of a dominant susceptible NBS-LRR gene provides insight into the behavior of NBS-LRR proteins and serves as a reminder to breeders that the dominance of an R gene can be influenced by a susceptibility allele.


Assuntos
Phakopsora pachyrhizi , Phakopsora pachyrhizi/genética , Glycine max/genética , Proteínas de Repetições Ricas em Leucina , Genes de Plantas/genética , Sítios de Ligação , Doenças das Plantas/genética
2.
Arch Virol ; 169(7): 143, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864946

RESUMO

Potyvirus genomes are expressed as polyproteins that are autocatalytically cleaved to produce 10 to 12 multifunctional proteins, among which P1 is the most variable. It has long been hypothesized that P1 plays role(s) in host adaptation and host specificity. We tested this hypothesis using two phylogenetically distinct potyviruses: soybean mosaic virus (SMV), with a narrow host range, and clover yellow vein virus (ClYVV), with a broader host range. When the full-length P1 cistron of SMV-N was replaced with P1 from ClYVV-No.30, the chimera systemically infected only SMV-N-permissive hosts. Hence, there were no changes in the host range or host specificity of the chimeric viruses. Despite sharing only 20.3% amino acid sequence identity, predicted molecular models of P1 proteins from SMV-N and ClYVV-No.30 showed analogous topologies. These observations suggest that P1 of ClYVV-No.30 can functionally replace P1 of SMV-N. However, the P1 proteins of these two potyviruses are not determinants of host specificity and host range.


Assuntos
Especificidade de Hospedeiro , Doenças das Plantas , Potyvirus , Proteínas Virais , Potyvirus/genética , Potyvirus/fisiologia , Doenças das Plantas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Glycine max/virologia , Nicotiana/virologia , Filogenia
3.
Plant Dis ; 105(10): 2785-2791, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33560883

RESUMO

Viruses and viroids prevalent in a population of 42 wild grapevines (i.e., free-living, uncultivated grapevines; Vitis spp.) were compared with those in a population of 85 cultivated grapevines collected in Tennessee, United States by RNA sequencing analysis of pools of ribosomal RNA-depleted total RNA. The sequences of 10 viruses (grapevine fleck virus, grapevine leafroll-associated virus 2, grapevine rupestris stem pitting-associated virus, grapevine Syrah virus 1, grapevine vein-clearing virus, grapevine virus B, grapevine virus E, tobacco ringspot virus, tomato ringspot virus, and a novel nano-like virus) and two viroids (hop stunt viroid and grapevine yellow speckle viroid 1) were detected in both grapevine populations. Sequences of four viruses (grapevine associated tymo-like virus, grapevine leafroll-associated virus 3, grapevine red blotch virus, and grapevine virus H) were identified only from cultivated grapevines. High, moderate, and low numbers of sequence reads were identified only from wild grapevines for a novel caulimovirus, an enamovirus, and alfalfa mosaic virus, respectively. The presence of most virus sequences and both viroids was verified independently in the original samples by reverse-transcription PCR followed by Sanger sequencing. Comparison of viral sequences shared by both populations showed that cultivated and wild grapevines harbored distinct sequence variants, which suggests that there was limited virus movement between the two populations. Collectively, this study represents the first unbiased survey of viruses and viroids in both cultivated and wild grapevines within a defined geographic region.


Assuntos
Doenças das Plantas/virologia , Viroides , Vitis , RNA Viral/genética , Tennessee , Viroides/genética , Viroides/patogenicidade , Vitis/virologia
4.
J Gen Virol ; 101(1): 105-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769392

RESUMO

A novel picorna-like virus, provisionally named Aphis glycines virus 1 (ApGlV1) was discovered by high-throughput sequencing of soybean total RNAs and detected in suction trap-collected Aphis glycines. The ApGlV1 genome contains two large ORFs organized similar to those of dicipiviruses in the Picornaviridae where ORFs 1 and 2 encode structural and nonstructural proteins, respectively. Both ORFs are preceded by internal ribosome entry site (IRES) elements. The 5' IRES was more active in dual luciferase activity assays than the IRES in the intergenic region. The ApGlV1 genome was predicted to encode a serine protease instead of a cysteine protease and showed very low aa sequence identities to recognized members of the Picornavirales. In phylogenetic analyses based on capsid protein and RNA-dependent RNA polymerase sequences, ApGlV1 consistently clustered with a group of unclassified bicistronic picorna-like viruses discovered from arthropods and plants that may represent a novel family in the order Picornavirales.


Assuntos
Sítios Internos de Entrada Ribossomal/genética , Picornaviridae/genética , Vírus não Classificados/genética , Genoma Viral/genética , Fases de Leitura Aberta/genética , Vírus de RNA/genética , RNA Viral/genética , Proteínas Virais/genética
5.
Plant J ; 95(1): 71-85, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29671916

RESUMO

Glycine latifolia (Benth.) Newell & Hymowitz (2n = 40), one of the 27 wild perennial relatives of soybean, possesses genetic diversity and agronomically favorable traits that are lacking in soybean. Here, we report the 939-Mb draft genome assembly of G. latifolia (PI 559298) using exclusively linked-reads sequenced from a single Chromium library. We organized scaffolds into 20 chromosome-scale pseudomolecules utilizing two genetic maps and the Glycine max (L.) Merr. genome sequence. High copy numbers of putative 91-bp centromere-specific tandem repeats were observed in consecutive blocks within predicted pericentromeric regions on several pseudomolecules. No 92-bp putative centromeric repeats, which are abundant in G. max, were detected in G. latifolia or Glycine tomentella. Annotation of the assembled genome and subsequent filtering yielded a high confidence gene set of 54 475 protein-coding loci. In comparative analysis with five legume species, genes related to defense responses were significantly overrepresented in Glycine-specific orthologous gene families. A total of 304 putative nucleotide-binding site (NBS)-leucine-rich-repeat (LRR) genes were identified in this genome assembly. Different from other legume species, we observed a scarcity of TIR-NBS-LRR genes in G. latifolia. The G. latifolia genome was also predicted to contain genes encoding 367 LRR-receptor-like kinases, a family of proteins involved in basal defense responses and responses to abiotic stress. The genome sequence and annotation of G. latifolia provides a valuable source of alternative alleles and novel genes to facilitate soybean improvement. This study also highlights the efficacy and cost-effectiveness of the application of Chromium linked-reads in diploid plant genome de novo assembly.


Assuntos
Genoma de Planta/genética , Glicina/genética , Centrômero/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genes de Plantas/genética , Análise de Sequência de DNA , Sequências de Repetição em Tandem/genética
6.
Theor Appl Genet ; 132(12): 3413-3424, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31630210

RESUMO

KEY MESSAGE: Genome-wide association analyses identified candidates for genes involved in restricting virus movement into embryonic tissues, suppressing virus-induced seed coat mottling and preserving yield in soybean plants infected with soybean mosaic virus. Soybean mosaic virus (SMV) causes significant reductions in soybean yield and seed quality. Because seedborne infections can serve as primary sources of inoculum for SMV infections, resistance to SMV seed transmission provides a means to limit the impacts of SMV. In this study, two diverse population panels, Pop1 and Pop2, composed of 409 and 199 soybean plant introductions, respectively, were evaluated for SMV seed transmission rate, seed coat mottling, and seed yield from SMV-infected plants. The phenotypic data and genotypic data from the SoySNP50K dataset were analyzed using GAPIT and rrBLUP. For SMV seed transmission rate, a single locus was identified on chromosome 9 in Pop1. For SMV-induced seed coat mottling, loci were identified on chromosome 9 in Pop1 and on chromosome 3 in Pop2. For seed yield from SMV-infected plants, a single locus was identified on chromosome 3 in Pop2 that was within the map interval of a previously described quantitative trait locus for seed number. The high linkage disequilibrium regions surrounding the markers on chromosomes 3 and 9 contained a predicted nonsense-mediated RNA decay gene, multiple pectin methylesterase inhibitor genes (involved in restricting virus movement), two chalcone synthase genes, and a homolog of the yeast Rtf1 gene (involved in RNA-mediated transcriptional gene silencing). The results of this study provided additional insight into the genetic architecture of these three important traits, suggested candidate genes for downstream functional validation, and suggested that genomic prediction would outperform marker-assisted selection for two of the four trait-marker associations.


Assuntos
Glycine max/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Potyvirus/patogenicidade , Estudos de Associação Genética , Genótipo , Desequilíbrio de Ligação , Fenótipo , Locos de Características Quantitativas , Sementes/virologia , Glycine max/virologia
7.
Arch Virol ; 164(6): 1553-1565, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30923966

RESUMO

Two isolates of Youcai mosaic virus (YoMV) were obtained, and their full-length genomic sequences were determined. Full-length infectious cDNA clones of each isolate were generated in which the viral sequence was under the control of dual T7 and 35S promoters for both in vitro transcript production and agro-infiltration. Comparison of the predicted amino acid sequences of the encoded proteins revealed only four differences between the isolates: three in the RNA-dependent RNA polymerase (RdRp) (V383I and M492I in the 125-kDa protein and T1245M in the 182-kDa protein); and one in the overlapping region of the movement protein (MP) and coat protein (CP) genes, affecting only the N-terminal domain of CP (CP M17T). One of the isolates caused severe symptoms in Nicotiana benthamiana plants, while the other caused only mild symptoms. In order to identify the amino acid residues associated with symptom severity, chimeric constructs were generated by combining parts of the two infectious YoMV clones, and the symptoms in infected plants were compared to those induced by the parental isolates. This allowed us to conclude that the M17T substitution in the N-terminal domain of CP was responsible for the difference in symptom severity. The M17T variation was found to be unique among characterized YoMV isolates. A difference in potential post-translational modification resulting from the presence of a predicted casein kinase II phosphorylation site only in the CP of isolate HK2 may be responsible for the symptom differences.


Assuntos
Nicotiana/virologia , Polimorfismo de Nucleotídeo Único , Tobamovirus/patogenicidade , Fatores de Virulência/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Doenças das Plantas , Processamento de Proteína Pós-Traducional , Fases de Leitura , Análise de Sequência de Proteína , Tobamovirus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo
8.
Arch Virol ; 164(4): 1233-1244, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30663023

RESUMO

In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Assuntos
Mononegavirais/classificação , Mononegavirais/genética , Mononegavirais/isolamento & purificação , Filogenia , Virologia/organização & administração
9.
Phytopathology ; 109(9): 1638-1647, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31044662

RESUMO

Infectious clones of Korean turnip mosaic virus (TuMV) isolates KIH1 and HJY1 share 88.1% genomic nucleotides and 96.4% polyprotein amino acid identity, and they induce systemic necrosis or mild mosaic, respectively, in Nicotiana benthamiana. Chimeric constructs between these isolates exchanged the 5', central, and 3' domains of KIH1 (K) and HJY1 (H), where the order of the letters indicates the origin of these domains. KIH1 and chimeras KHH and KKH induced systemic necrosis, whereas HJY1 and chimeras HHK, HKK, and HKH induced mild symptoms, indicating the determinant of necrosis to be within the 5' 3.9 kb of KIH1; amino acid identities of the included P1, Helper component protease, P3, 6K1, and cylindrical inclusion N-terminal domain were 90.06, 98.91, 93.80, 100, and 100%, respectively. Expression of P1 or P3 from a potato virus X vector yielded symptom differences only between P3 of KIH1 and HJY1, implicating a role for P3 in necrosis in N. benthamiana. Chimera KKH infected Brassica rapa var. pekinensis 'Norang', which was resistant to both KIH1 and HJY1, indicating that two separate TuMV determinants are required to overcome the resistance. Ability of diverse TuMV isolates, chimeras, and recombinants to overcome resistance in breeding lines may allow identification of novel resistance genes.


Assuntos
Brassica , Nicotiana , Brassica/virologia , Quimera , Doenças das Plantas/microbiologia , Potyvirus , Nicotiana/virologia
10.
J Nematol ; 512019.
Artigo em Inglês | MEDLINE | ID: mdl-34179812

RESUMO

Heterodera glycines, the soybean cyst nematode (SCN), is a plant-parasitic nematode capable of manipulating host plant biochemistry and development. Many studies have suggested that the nematode has acquired genes from bacteria via horizontal gene transfer events (HGTs) that have the potential to enhance nematode parasitism. A recent allelic imbalance analysis identified two candidate virulence genes, which also appear to have entered the SCN genome through HGTs. One of the candidate genes, H. glycines biotin synthase (HgBioB), contained sequence polymorphisms between avirulent and virulent inbred SCN strains. To test the function of these HgBioB alleles, a complementation experiment using biotin synthase-deficient Escherichia coli was conducted. Here, we report that avirulent nematodes produce an active biotin synthase while virulent ones contain an inactive form of the enzyme. Moreover, sequencing analysis of HgBioB genes from SCN field populations indicates the presence of diverse mixture of HgBioB alleles with the virulent form being the most prevalent. We hypothesize that the mutations in the inactive HgBioB allele within the virulent SCN could result in a change in protein function that in some unknown way bolster its parasitic lifestyle.

11.
J Gen Virol ; 99(10): 1418-1424, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30156527

RESUMO

Analysis of transcriptome sequence data from eggs and second-stage juveniles (J2s) of sugar beet cyst nematode (SBCN, Heterodera schachtii) identified the full-length genome of a positive-sense single-stranded RNA virus, provisionally named sugar beet cyst nematode virus 1 (SBCNV1). The SBCNV1 sequence was detected in both eggs and J2s, indicating its possible vertical transmission. The 9503-nucleotide genome sequence contains a single long open reading frame, which was predicted to encode a polyprotein with conserved domains for picornaviral structural proteins proximal to its amino terminus and RNA helicase, cysteine proteinase and RNA-dependent RNA polymerase (RdRp) conserved domains proximal to its carboxyl terminus, hallmarks of viruses belonging to the order Picornavirales. Phylogenetic analysis of the predicted SBCNV1 RdRp amino acid sequence indicated that the SBCNV1 sequence is most closely related to members of the family Secoviridae, which includes genera of nematode-transmitted plant-infecting viruses. SBCNV1 represents the first fully sequenced viral genome from SBCN.


Assuntos
Beta vulgaris/parasitologia , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Transcriptoma , Tylenchoidea/virologia , Animais , Genoma Viral , Anotação de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Picornaviridae/genética , RNA Polimerase Dependente de RNA/genética , Análise de Sequência de DNA , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos , Tylenchoidea/genética , Tylenchoidea/crescimento & desenvolvimento , Proteínas Virais/genética
12.
Arch Virol ; 163(8): 2283-2294, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29637429

RESUMO

In 2018, the order Mononegavirales was expanded by inclusion of 1 new genus and 12 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.


Assuntos
Mononegavirais/classificação , Animais , Humanos , Mononegavirais/genética , Mononegavirais/isolamento & purificação , Infecções por Mononegavirales/veterinária , Infecções por Mononegavirales/virologia , Filogenia
13.
J Virol ; 90(15): 6846-6863, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194764

RESUMO

UNLABELLED: Mycoviruses can have a marked effect on natural fungal communities and influence plant health and productivity. However, a comprehensive picture of mycoviral diversity is still lacking. To characterize the viromes of five widely dispersed plant-pathogenic fungi, Colletotrichum truncatum, Macrophomina phaseolina, Diaporthe longicolla, Rhizoctonia solani, and Sclerotinia sclerotiorum, a high-throughput sequencing-based metatranscriptomic approach was used to detect viral sequences. Total RNA and double-stranded RNA (dsRNA) from mycelia and RNA from samples enriched for virus particles were sequenced. Sequence data were assembled de novo, and contigs with predicted amino acid sequence similarities to viruses in the nonredundant protein database were selected. The analysis identified 72 partial or complete genome segments representing 66 previously undescribed mycoviruses. Using primers specific for each viral contig, at least one fungal isolate was identified that contained each virus. The novel mycoviruses showed affinity with 15 distinct lineages: Barnaviridae, Benyviridae, Chrysoviridae, Endornaviridae, Fusariviridae, Hypoviridae, Mononegavirales, Narnaviridae, Ophioviridae, Ourmiavirus, Partitiviridae, Tombusviridae, Totiviridae, Tymoviridae, and Virgaviridae More than half of the viral sequences were predicted to be members of the Mitovirus genus in the family Narnaviridae, which replicate within mitochondria. Five viral sequences showed strong affinity with three families (Benyviridae, Ophioviridae, and Virgaviridae) that previously contained no mycovirus species. The genomic information provides insight into the diversity and taxonomy of mycoviruses and coevolution of mycoviruses and their fungal hosts. IMPORTANCE: Plant-pathogenic fungi reduce crop yields, which affects food security worldwide. Plant host resistance is considered a sustainable disease management option but may often be incomplete or lacking for some crops to certain fungal pathogens or strains. In addition, the rising issues of fungicide resistance demand alternative strategies to reduce the negative impacts of fungal pathogens. Those fungus-infecting viruses (mycoviruses) that attenuate fungal virulence may be welcome additions for mitigation of plant diseases. By high-throughput sequencing of the RNAs from 275 isolates of five fungal plant pathogens, 66 previously undescribed mycoviruses were identified. In addition to identifying new potential biological control agents, these results expand the grand view of the diversity of mycoviruses and provide possible insights into the importance of intracellular and extracellular transmission in fungus-virus coevolution.


Assuntos
Ascomicetos/virologia , Micovírus/classificação , Micovírus/genética , Genoma Viral , Metagenômica , Doenças das Plantas/virologia , Plantas/virologia , Transcriptoma , Micovírus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Micélio/virologia , Filogenia , RNA Viral/genética
14.
Arch Virol ; 162(4): 1089-1092, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27921175

RESUMO

The complete nucleotide sequence of a new soybean-infecting member of the genus Nepovirus (provisionally named "soybean latent spherical virus" [SLSV]) was identified by high-throughput sequencing of RNAs from soybean leaf samples from North Dakota, USA. The sequences of RNAs 1 (8,190 nt) and 2 (5,788 nt) were completed by rapid amplification of cDNA ends. Each contained a single long open reading frame and a 3' nontranslated region of greater than 1,500 nt. The predicted amino acid sequences of the two ORFs were most closely related to nepoviruses in subgroup C. Full-length cDNAs of RNAs 1 and 2 were cloned and used to inoculate soybean plants, which did not display obvious symptoms. These results suggest that SLSV represents a new species in the genus Nepovirus.


Assuntos
Glycine max/virologia , Nepovirus/genética , Nepovirus/isolamento & purificação , Doenças das Plantas/virologia , Sequência de Aminoácidos , Sequência de Bases , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Nepovirus/classificação , Nepovirus/fisiologia , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética
15.
Virus Genes ; 53(3): 434-445, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28176159

RESUMO

Two isolates of Pepper mild mottle virus (PMMoV) were selected from a nationwide survey of pepper fields in South Korea in 2014 and 2015, in which Cucumber mosaic virus was also detected; the two PMMoV isolates, Sangcheong 47 (S-47, KX399390) and Jeongsong 76 (J-76, KX399389), share ~99% nucleotide and amino acid identity and are closely related to Japanese and Chinese isolates at the nucleotide level. Amino acid sequence comparisons revealed 99.73, 99.81, 98.44, and 100% identity in the ORF1, ORF2, MP, and CP, respectively, between S-47 and J-76. In addition, we generated infectious clones of S-47 and J-76, and T7 promoter driven transcripts of each inoculated to Nicotiana benthamiana produced very severe symptoms, whereas only mild symptoms developed in Capsicum annuum. Gene silencing suppressor function of 126 kDa and cytoskeleton-connected plasmodesmata localization of movement protein of S-47 and J-76 showed no difference between isolates, whereas 126 kDa of J-76 clearly formed intracellular aggregates not observed with S-47 126 kDa protein. Differences between these isolates in 126/183 kDa-related functions including subcellular localization suggest that differential interactions with host proteins may affect symptom development in C. annuum.


Assuntos
Doenças das Plantas/virologia , Tobamovirus/isolamento & purificação , Tobamovirus/patogenicidade , Proteínas Virais/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Capsicum/virologia , Clonagem Molecular , Cucumovirus/genética , DNA Complementar/genética , Genoma Viral/genética , Filogenia , Regiões Promotoras Genéticas , Vírus de RNA/genética , República da Coreia , Nicotiana/virologia , Tobamovirus/genética
16.
Mol Plant Microbe Interact ; 29(2): 96-108, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26646532

RESUMO

Sudden death syndrome (SDS) of soybean is caused by a soilborne pathogen, Fusarium virguliforme. Phytotoxins produced by F. virguliforme are translocated from infected roots to leaves, in which they cause SDS foliar symptoms. In this study, additional putative phytotoxins of F. virguliforme were identified, including three secondary metabolites and 11 effectors. While citrinin, fusaric acid, and radicicol induced foliar chlorosis and wilting, Soybean mosaic virus (SMV)-mediated overexpression of F. virguliforme necrosis-inducing secreted protein 1 (FvNIS1) induced SDS foliar symptoms that mimicked the development of foliar symptoms in the field. The expression level of fvnis1 remained steady over time, although foliar symptoms were delayed compared with the expression levels. SMV::FvNIS1 also displayed genotype-specific toxicity to which 75 of 80 soybean cultivars were susceptible. Genome-wide association mapping further identified three single nucleotide polymorphisms at two loci, where three leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes were found. Culture filtrates of fvnis1 knockout mutants displayed a mild reduction in phytotoxicity, indicating that FvNIS1 is one of the phytotoxins responsible for SDS foliar symptoms and may contribute to the quantitative susceptibility of soybean by interacting with the LRR-RLK genes.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Glycine max/microbiologia , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Fusarium/genética , Deleção de Genes , Mutação , Micotoxinas/genética , Filogenia , Folhas de Planta/microbiologia , Transcriptoma
17.
BMC Genomics ; 17: 153, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26924079

RESUMO

BACKGROUND: Genome-wide association study (GWAS) is a useful tool for detecting and characterizing traits of interest including those associated with disease resistance in soybean. The availability of 50,000 single nucleotide polymorphism (SNP) markers (SoySNP50K iSelect BeadChip; www.soybase.org ) on 19,652 soybean and wild soybean plant introductions (PIs) in the USDA Soybean Germplasm Collection allows for fast and robust identification of loci associated with a desired phenotype. By using a genome-wide marker set to predict phenotypic values, genomic prediction for phenotype-unknown but genotype-determined PIs has become possible. The goal of this study was to describe the genetic architecture associated with sensitivity to Tobacco ringspot virus (TRSV) infection in the USDA Soybean Germplasm Collection. RESULTS: TRSV-induced disease sensitivities of the 697 soybean PIs were rated on a one to five scale with plants rated as one exhibiting mild symptoms and plants rated as five displaying terminal bud necrosis (i.e., bud blight). The GWAS identified a single locus on soybean chromosome 2 strongly associated with TRSV sensitivity. Cross-validation showed a correlation of 0.55 (P < 0.01) to TRSV sensitivity without including the most significant SNP marker from the GWAS as a covariate, which was a better estimation compared to the mean separation by using significant SNPs. The genomic estimated breeding values for the remaining 18,955 unscreened soybean PIs in the USDA Soybean Germplasm Collection were obtained using the GAPIT R package. To evaluate the prediction accuracy, an additional 55 soybean accessions were evaluated for sensitivity to TRSV, which resulted in a correlation of 0.67 (P < 0.01) between actual and predicted severities. CONCLUSION: A single locus responsible for TRSV sensitivity in soybean was identified on chromosome 2. Two leucine-rich repeat receptor-like kinase genes were located near the locus and may control sensitivity of soybean to TRSV infection. Furthermore, a comprehensive genomic prediction for TRSV sensitivity for all accessions in the USDA Soybean Germplasm Collection was completed.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Nepovirus , Doenças das Plantas/genética , Locos de Características Quantitativas , DNA de Plantas/genética , Estudos de Associação Genética , Genoma de Planta , Genótipo , Modelos Genéticos , Fenótipo , Doenças das Plantas/virologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Glycine max/virologia
18.
J Virol ; 89(9): 5060-71, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694604

RESUMO

UNLABELLED: A recombinant strain of Sclerotinia sclerotiorum hypovirus 2 (SsHV2) was identified from a North American Sclerotinia sclerotiorum isolate (328) from lettuce (Lactuca sativa L.) by high-throughput sequencing of total RNA. The 5'- and 3'-terminal regions of the genome were determined by rapid amplification of cDNA ends. The assembled nucleotide sequence was up to 92% identical to two recently reported SsHV2 strains but contained a deletion near its 5' terminus of more than 1.2 kb relative to the other SsHV2 strains and an insertion of 524 nucleotides (nt) that was distantly related to Valsa ceratosperma hypovirus 1. This suggests that the new isolate is a heterologous recombinant of SsHV2 with a yet-uncharacterized hypovirus. We named the new strain Sclerotinia sclerotiorum hypovirus 2 Lactuca (SsHV2L) and deposited the sequence in GenBank with accession number KF898354. Sclerotinia sclerotiorum isolate 328 was coinfected with a strain of Sclerotinia sclerotiorum endornavirus 1 and was debilitated compared to cultures of the same isolate that had been cured of virus infection by cycloheximide treatment and hyphal tipping. To determine whether SsHV2L alone could induce hypovirulence in S. sclerotiorum, a full-length cDNA of the 14,538-nt viral genome was cloned. Transcripts corresponding to the viral RNA were synthesized in vitro and transfected into a virus-free isolate of S. sclerotiorum, DK3. Isolate DK3 transfected with SsHV2L was hypovirulent on soybean and lettuce and exhibited delayed maturation of sclerotia relative to virus-free DK3, completing Koch's postulates for the association of hypovirulence with SsHV2L. IMPORTANCE: A cosmopolitan fungus, Sclerotinia sclerotiorum infects more than 400 plant species and causes a plant disease known as white mold that produces significant yield losses in major crops annually. Mycoviruses have been used successfully to reduce losses caused by fungal plant pathogens, but definitive relationships between hypovirus infections and hypovirulence in S. sclerotiorum were lacking. By establishing a cause-and-effect relationship between Sclerotinia sclerotiorum hypovirus Lactuca (SsHV2L) infection and the reduction in host virulence, we showed direct evidence that hypoviruses have the potential to reduce the severity of white mold disease. In addition to intraspecific recombination, this study showed that recent interspecific recombination is an important factor shaping viral genomes. The construction of an infectious clone of SsHV2L allows future exploration of the interactions between SsHV2L and S. sclerotiorum, a widespread fungal pathogen of plants.


Assuntos
Ascomicetos/virologia , Transfecção , Vírus/genética , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Lactuca/microbiologia , Lactuca/virologia , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Glycine max/microbiologia , Virulência , Vírus/classificação , Vírus/isolamento & purificação
19.
Arch Virol ; 161(8): 2351-60, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27216929

RESUMO

In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Assuntos
Genoma Viral , Mononegavirais/classificação , Mononegavirais/genética , Filogenia
20.
Phytopathology ; 106(10): 1139-1151, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27135674

RESUMO

Genetic resistance is a key strategy for disease management in soybean. Over the last 50 years, soybean germplasm has been phenotyped for resistance to many pathogens, resulting in the development of disease-resistant elite breeding lines and commercial cultivars. While biparental linkage mapping has been used to identify disease resistance loci, genome-wide association studies (GWAS) using high-density and high-quality markers such as single nucleotide polymorphisms (SNPs) has become a powerful tool to associate molecular markers and phenotypes. The objective of our study was to provide a comprehensive understanding of disease resistance in the United States Department of Agriculture Agricultural Research Service Soybean Germplasm Collection by using phenotypic data in the public Germplasm Resources Information Network and public SNP data (SoySNP50K). We identified SNPs significantly associated with disease ratings from one bacterial disease, five fungal diseases, two diseases caused by nematodes, and three viral diseases. We show that leucine-rich repeat (LRR) receptor-like kinases and nucleotide-binding site-LRR candidate resistance genes were enriched within the linkage disequilibrium regions of the significant SNPs. We review and present a global view of soybean resistance loci against multiple diseases and discuss the power and the challenges of using GWAS to discover disease resistance in soybean.


Assuntos
Cromossomos de Plantas/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Glycine max/genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Cruzamento , Mapeamento Cromossômico , Loci Gênicos/genética , Marcadores Genéticos/genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Glycine max/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA