Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 576(7786): 257-261, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31776517

RESUMO

Every night across the world's oceans, numerous marine animals arrive at the surface of the ocean to feed on plankton after an upward migration of hundreds of metres. Just before sunrise, this migration is reversed and the animals return to their daytime residence in the dark mesopelagic zone (at a depth of 200-1,000 m). This daily excursion, referred to as diel vertical migration (DVM), is thought of primarily as an adaptation to avoid visual predators in the sunlit surface layer1,2 and was first recorded using ship-net hauls nearly 200 years ago3. Nowadays, DVMs are routinely recorded by ship-mounted acoustic systems (for example, acoustic Doppler current profilers). These data show that night-time arrival and departure times are highly conserved across ocean regions4 and that daytime descent depths increase with water clarity4,5, indicating that animals have faster swimming speeds in clearer waters4. However, after decades of acoustic measurements, vast ocean areas remain unsampled and places for which data are available typically provide information for only a few months, resulting in an incomplete understanding of DVMs. Addressing this issue is important, because DVMs have a crucial role in global ocean biogeochemistry. Night-time feeding at the surface and daytime metabolism of this food at depth provide an efficient pathway for carbon and nutrient export6-8. Here we use observations from a satellite-mounted light-detection-and-ranging (lidar) instrument to describe global distributions of an optical signal from DVM animals that arrive in the surface ocean at night. Our findings reveal that these animals generally constitute a greater fraction of total plankton abundance in the clear subtropical gyres, consistent with the idea that the avoidance of visual predators is an important life strategy in these regions. Total DVM biomass, on the other hand, is higher in more productive regions in which the availability of food is increased. Furthermore, the 10-year satellite record reveals significant temporal trends in DVM biomass and correlated variations in DVM biomass and surface productivity. These results provide a detailed view of DVM activities globally and a path for refining the quantification of their biogeochemical importance.


Assuntos
Migração Animal , Animais , Oceanos e Mares , Comunicações Via Satélite , Fatores de Tempo
2.
Environ Sci Technol ; 57(49): 20571-20582, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38016278

RESUMO

The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.


Assuntos
Dióxido de Carbono , Incineração , Dióxido de Carbono/análise , Incineração/métodos , Indústrias , Compostos Orgânicos , Carbono , Plásticos
3.
Glob Chang Biol ; 24(7): 3065-3078, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29635875

RESUMO

The western Antarctic Peninsula (WAP) is a bellwether of global climate change and natural laboratory for identifying interactions between climate and ecosystems. The Palmer Long-Term Ecological Research (LTER) project has collected data on key ecological and environmental processes along the WAP since 1993. To better understand how key ecological parameters are changing across space and time, we developed a novel seascape classification approach based on in situ temperature, salinity, chlorophyll a, nitrate + nitrite, phosphate, and silicate. We anticipate that this approach will be broadly applicable to other geographical areas. Through the application of self-organizing maps (SOMs), we identified eight recurrent seascape units (SUs) in these data. These SUs have strong fidelity to known regional water masses but with an additional layer of biogeochemical detail, allowing us to identify multiple distinct nutrient profiles in several water masses. To identify the temporal and spatial distribution of these SUs, we mapped them across the Palmer LTER sampling grid via objective mapping of the original parameters. Analysis of the abundance and distribution of SUs since 1993 suggests two year types characterized by the partitioning of chlorophyll a into SUs with different spatial characteristics. By developing generalized linear models for correlated, time-lagged external drivers, we conclude that early spring sea ice conditions exert a strong influence on the distribution of chlorophyll a and nutrients along the WAP, but not necessarily the total chlorophyll a inventory. Because the distribution and density of phytoplankton biomass can have an impact on biomass transfer to the upper trophic levels, these results highlight anticipated links between the WAP marine ecosystem and climate.


Assuntos
Mudança Climática , Ecossistema , Regiões Antárticas , Biomassa , Camada de Gelo , Fitoplâncton , Estações do Ano , Temperatura
4.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760119

RESUMO

New production (New P, the rate of net primary production (NPP) supported by exogenously supplied limiting nutrients) and net community production (NCP, gross primary production not consumed by community respiration) are closely related but mechanistically distinct processes. They set the carbon balance in the upper ocean and define an upper limit for export from the system. The relationships, relative magnitudes and variability of New P (from 15NO3- uptake), O2 : argon-based NCP and sinking particle export (based on the 238U : 234Th disequilibrium) are increasingly well documented but still not clearly understood. This is especially true in remote regions such as polar marginal ice zones. Here we present a 3-year dataset of simultaneous measurements made at approximately 50 stations along the Western Antarctic Peninsula (WAP) continental shelf in midsummer (January) 2012-2014. Net seasonal-scale changes in water column inventories (0-150 m) of nitrate and iodide were also estimated at the same stations. The average daily rates based on inventory changes exceeded the shorter-term rate measurements. A major uncertainty in the relative magnitude of the inventory estimates is specifying the start of the growing season following sea-ice retreat. New P and NCP(O2) did not differ significantly. New P and NCP(O2) were significantly greater than sinking particle export from thorium-234. We suggest this is a persistent and systematic imbalance and that other processes such as vertical mixing and advection of suspended particles are important export pathways.This article is part of the theme issue 'The marine system of the west Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

5.
Nature ; 488(7413): 615-20, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22895186

RESUMO

The ocean plays a critical role in supporting human well-being, from providing food, livelihoods and recreational opportunities to regulating the global climate. Sustainable management aimed at maintaining the flow of a broad range of benefits from the ocean requires a comprehensive and quantitative method to measure and monitor the health of coupled human­ocean systems. We created an index comprising ten diverse public goals for a healthy coupled human­ocean system and calculated the index for every coastal country. Globally, the overall index score was 60 out of 100 (range 36­86), with developed countries generally performing better than developing countries, but with notable exceptions. Only 5% of countries scored higher than 70, whereas 32% scored lower than 50. The index provides a powerful tool to raise public awareness, direct resource management, improve policy and prioritize scientific research.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Ecossistema , Monitoramento Ambiental/métodos , Internacionalidade , Biologia Marinha/métodos , Oceanografia/métodos , Água do Mar , Animais , Política Ambiental , Pesqueiros , Geografia , Atividades Humanas/normas , Atividades Humanas/estatística & dados numéricos , Oceanos e Mares , Recreação , Poluição da Água/análise
6.
Glob Chang Biol ; 22(8): 2633-50, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27111095

RESUMO

Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats - from short-lived phytoplankton to long-lived corals - in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate-change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate-change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate-change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate-change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to physiologically straddle wide-ranging timescales in the alteration of ocean conditions, including the need to adapt to rapidly rising CO2 and also acclimate to environmental heterogeneity in more slowly changing properties such as warming.


Assuntos
Mudança Climática , Ecossistema , Oceanos e Mares , Clima , Fitoplâncton
7.
Global Biogeochem Cycles ; 28(11): 1295-1310, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26074665

RESUMO

The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997-2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr-1 K-1. These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses.

8.
Ann Rev Mar Sci ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955207

RESUMO

Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO2) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations. Further targeted research is needed on CDR efficacy, permanence, and additionality as well as on robust validation methods-measurement, monitoring, reporting, and verification-that are essential to demonstrate the safe removal and long-term storage of CO2. Engineering studies are needed on constraints including scalability, costs, resource inputs, energy demands, and technical readiness. Research on possible co-benefits, ocean acidification effects, environmental and social impacts, and governance is also required.

9.
Proc Natl Acad Sci U S A ; 107(4): 1295-300, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080628

RESUMO

Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.


Assuntos
Aquecimento Global , Efeito Estufa , Árvores/fisiologia , Regiões Árticas , Ecossistema
10.
J Geophys Res Atmos ; 128(3): e2022JD036696, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37034456

RESUMO

Variations in atmosphere total column-mean CO2 (XCO2) collected by the National Aeronautics and Space Administration's Orbiting Carbon Observatory-2 satellite can be used to constrain surface carbon fluxes if the influence of atmospheric transport and observation errors on the data is known and accounted for. Due to sparse validation data, the portions of fine-scale variability in XCO2 driven by fluxes, transport, or retrieval errors remain uncertain, particularly over the ocean. To better understand these drivers, we characterize variability in OCO-2 Level 2 version 10 XCO2 from the seasonal scale, synoptic-scale (order of days, thousands of kilometers), and mesoscale (within-day, hundreds of kilometers) for 10 biomes over North America and adjacent ocean basins. Seasonal and synoptic variations in XCO2 reflect real geophysical drivers (transport and fluxes), following large-scale atmospheric circulation and the north-south distribution of biosphere carbon uptake. In contrast, geostatistical analysis of mesoscale and finer variability shows that real signals are obscured by systematic biases across the domain. Spatial correlations in along-track XCO2 are much shorter and spatially coherent variability is much larger in magnitude than can be attributed to fluxes or transport. We characterize random and coherent along-track XCO2 variability in addition to quantifying uncertainty in XCO2 aggregates across typical lengths used in inverse modeling. Even over the ocean, correlated errors decrease the independence and increase uncertainty in XCO2. We discuss the utility of computing geostatistical parameters and demonstrate their importance for XCO2 science applications spanning from data reprocessing and algorithm development to error estimation and carbon flux inference.

11.
Front Microbiol ; 14: 1049579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876093

RESUMO

Marine heterotrophic Bacteria (or referred to as bacteria) play an important role in the ocean carbon cycle by utilizing, respiring, and remineralizing organic matter exported from the surface to deep ocean. Here, we investigate the responses of bacteria to climate change using a three-dimensional coupled ocean biogeochemical model with explicit bacterial dynamics as part of the Coupled Model Intercomparison Project Phase 6. First, we assess the credibility of the century-scale projections (2015-2099) of bacterial carbon stock and rates in the upper 100 m layer using skill scores and compilations of the measurements for the contemporary period (1988-2011). Second, we demonstrate that across different climate scenarios, the simulated bacterial biomass trends (2076-2099) are sensitive to the regional trends in temperature and organic carbon stocks. Bacterial carbon biomass declines by 5-10% globally, while it increases by 3-5% in the Southern Ocean where semi-labile dissolved organic carbon (DOC) stocks are relatively low and particle-attached bacteria dominate. While a full analysis of drivers underpinning the simulated changes in all bacterial stock and rates is not possible due to data constraints, we investigate the mechanisms of the changes in DOC uptake rates of free-living bacteria using the first-order Taylor decomposition. The results demonstrate that the increase in semi-labile DOC stocks drives the increase in DOC uptake rates in the Southern Ocean, while the increase in temperature drives the increase in DOC uptake rates in the northern high and low latitudes. Our study provides a systematic analysis of bacteria at global scale and a critical step toward a better understanding of how bacteria affect the functioning of the biological carbon pump and partitioning of organic carbon pools between surface and deep layers.

12.
Environ Microbiol ; 14(5): 1210-23, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22324779

RESUMO

Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10-month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates and production rates were quantified over time and depth. This interdisciplinary data set was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A-dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favour DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified 'bacterial switch' hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature and UV-A dose.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Água do Mar/microbiologia , Sulfetos/metabolismo , Oceano Atlântico , Bactérias/enzimologia , Bactérias/efeitos da radiação , Bermudas , Liases de Carbono-Enxofre/metabolismo , Genes Bacterianos/genética , Fitoplâncton/enzimologia , Fitoplâncton/genética , Fitoplâncton/metabolismo , Compostos de Sulfônio/metabolismo , Enxofre/metabolismo , Transcrição Gênica , Raios Ultravioleta
13.
Proc Natl Acad Sci U S A ; 106(12): 4601-5, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19273845

RESUMO

Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.


Assuntos
Aerossóis/toxicidade , Atmosfera/química , Fitoplâncton/efeitos dos fármacos , Água do Mar , Cobre/toxicidade , Geografia , Testes de Toxicidade , Oligoelementos/toxicidade
14.
Nat Microbiol ; 7(4): 508-523, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35365785

RESUMO

One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.


Assuntos
Ciclo do Carbono , Água do Mar , Bactérias/metabolismo , Carbono/metabolismo , Fitoplâncton/metabolismo , Água do Mar/microbiologia
15.
Nature ; 437(7059): 681-6, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16193043

RESUMO

Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.


Assuntos
Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Ecossistema , Água do Mar/química , Ácidos/análise , Animais , Antozoários/metabolismo , Atmosfera/química , Carbonato de Cálcio/análise , Carbonato de Cálcio/química , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clima , Cadeia Alimentar , Concentração de Íons de Hidrogênio , Oceanos e Mares , Plâncton/química , Plâncton/metabolismo , Termodinâmica , Fatores de Tempo , Incerteza
17.
J Geophys Res Biogeosci ; 126(2): e2020JG006116, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35866055

RESUMO

The 14C incubation method for net primary production (NPP) has limited spatial/temporal resolution, while satellite approaches cannot provide direct information at depth. With chlorophyll-a and backscatter measurements from BGC-Argo floats, we quantified year-round NPP in the western North Atlantic Ocean using both the Carbon-based Productivity Model (CbPM) and Photoacclimation Productivity Model (PPM). Comparison with NPP profiles from 14C incubation measurements showed advantages and limitations of both models. CbPM reproduced the magnitude of NPP in most cases. However, in the summer the CbPM-based NPP had a large peak in the subsurface, which was an artifact from the subsurface chlorophyll maximum caused by photoacclimation. PPM avoided the artifacts from photoacclimation, but the magnitude of PPM-derived NPP was smaller than the 14C result. Different NPP distribution patterns along a North-South transect in the Western North Atlantic Ocean were observed, including higher winter NPP/lower summer NPP in the south, timing differences in NPP seasonal phenology, and different NPP depth distribution patterns in the summer months. Using a 6-months record of concurrent oxygen and bio-optical measurements from two Argo floats, we also demonstrated the ability of Argo floats to obtain estimates of the net community production to NPP ratio, ranging from 0.3 in July to -1.0 in December 2016. Our results highlight the utility of float bio-optical profiles and indicate that environmental conditions (e.g., light availability, nutrient supply) are major factors controlling the seasonality and spatial (horizontal and vertical) distributions of NPP in the western North Atlantic Ocean.

18.
J Acoust Soc Am ; 128(3): EL130-6, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20815429

RESUMO

Possible future changes of ambient shipping noise at 0.1-1 kHz in the North Pacific caused by changing seawater chemistry conditions are analyzed with a simplified propagation model. Probable decreases of pH would cause meaningful reduction of the sound absorption coefficient in near-surface ocean water for these frequencies. The results show that a few decibels of increase may occur in 100 years in some very quiet areas very far from noise sources, with small effects closer to noise sources. The use of ray physics allows sound energy attenuated via volume absorption and by the seafloor to be compared.


Assuntos
Acústica , Modelos Teóricos , Ruído dos Transportes , Água do Mar/química , Navios , Absorção , Artefatos , Concentração de Íons de Hidrogênio , Movimento (Física) , Oceano Pacífico , Espectrografia do Som , Fatores de Tempo
19.
J Mar Syst ; 76(1-2): 4-15, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28366997

RESUMO

Coupled biological/physical models of marine systems serve many purposes including the synthesis of information, hypothesis generation, and as a tool for numerical experimentation. However, marine system models are increasingly used for prediction to support high-stakes decision-making. In such applications it is imperative that a rigorous model skill assessment is conducted so that the model's capabilities are tested and understood. Herein, we review several metrics and approaches useful to evaluate model skill. The definition of skill and the determination of the skill level necessary for a given application is context specific and no single metric is likely to reveal all aspects of model skill. Thus, we recommend the use of several metrics, in concert, to provide a more thorough appraisal. The routine application and presentation of rigorous skill assessment metrics will also serve the broader interests of the modeling community, ultimately resulting in improved forecasting abilities as well as helping us recognize our limitations.

20.
Mar Pollut Bull ; 145: 96-104, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31590839

RESUMO

Coastal water clarity varies at high temporal and spatial scales due to weather, climate, and human activity along coastlines. Systematic observations are crucial to assessing the impact of water clarity change on aquatic habitats. In this study, Secchi disk depths (ZSD) from Boston Harbor, Buzzards Bay, Cape Cod Bay, and Narragansett Bay water quality monitoring organizations were compiled to validate ZSD derived from Landsat 8 (L8) imagery, and to generate high spatial resolution ZSD maps. From 58 L8 images, acceptable agreement was found between in situ and L8 ZSD in Buzzards Bay (N = 42, RMSE = 0.96 m, MAPD = 28%), Cape Cod Bay (N = 11, RMSE = 0.62 m, MAPD = 10%), and Narragansett Bay (N = 8, RMSE = 0.59 m, MAPD = 26%). This work demonstrates the value of merging in situ ZSD with high spatial resolution remote sensing estimates for improved coastal water quality monitoring.


Assuntos
Monitoramento Ambiental/métodos , Imagens de Satélites , Água do Mar/análise , Poluição da Água/análise , Qualidade da Água , Boston , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA