Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
ACS Omega ; 9(3): 3675-3690, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284033

RESUMO

By performing density functional theory (DFT) calculations for geometric optimization in conjunction with the artificial bee colony algorithm for cluster (ABCluster) global search approach, the ground-state structures of the neutral, anionic, and dianionic ZrSnn0/-/2- (n = 4-17) nanoscale compounds are obtained. Their structural growth evolution, spectral information, and electronic and thermochemical properties are investigated. Regarding the architectural evolution of the neutral, anion, and dianionic species, ZrSnn0/-/2- (n = 4-17) compounds possess two different stages of adsorption patterns in which, when n = 4-7 and n = 8-17, ZrSn40/-/2- and ZrSn80/-/2- compounds as the basic motif adsorb Sn atoms to become the larger clusters, respectively. The simulated photoelectron spectra (PES) of anionic compounds are in good agreement with the available experimental PES. The infrared and Raman spectra can be summarized as follows: under infrared vibrational modes, the sealed cages of ZrSnn0/-/2- compounds belong to the deformation mode, and under Raman vibrational modes, they belong to the breathing mode of the Sn cage framework. The density of states (DOS) spectra and natural population analysis (NPA) indicate that the interaction between the Zr atom and Snn frameworks of capsulated compounds has been developing stronger than for unsealed compounds. The results of thermochemical properties, molecular orbital shell (MOs) analysis, and ultraviolet-visible (UV-vis) absorption spectrum indicate that the neutral ZrSn16 nanoscale compound possesses not only both thermodynamic and chemical stability but also far-infrared sensing and optoelectronic properties and hence, is the best building block motif for new multipurpose nanoscale materials.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124277, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636426

RESUMO

The global and local minimum configurations of single Hf atom doped Sn clusters are conducted via density function theory (DFT) combined with artificial bee colony algorithm (ABCluster). Furthermore, DFT method is also used to systematically investigate on their structural growth evolution, spectral and electronic information, thermochemical properties following the size of tin clusters doped Hf atom. Structurally, the ground-state geometries of neutral, anion and di-anion are discovered that, from n = 4, the number of Sn atoms in cluster, HfSnn0/-/2- adsorb additional Sn atom on the prior architecture one by one until forming n = 17 for HfSnn-10/-, as well as forming n = 16 for HfSnn-12-. And for the HfSn110/- and HfSn102- as beginning the species veritably develop sealed architectures. The strongest vibrational modes of sealed nanoclusters are stretching modes of Hf atom with infrared actives and breathing modes of the Sn cage framework with Raman actives, respectively. The natural population analysis (NPA) elucidates the stronger relationship between the Hf atoms and the tin frameworks in sealed clusters than that in unsealed clusters. The results of thermochemical properties, molecular orbital shell (MOs), adaptive natural density partitioning (AdNDP) and ultraviolet visible absorption spectrum (UV-Vis) indicate that, the HfSn16 with high symmetry of Td exhibits thermochemical stability and optoelectronic properties, which is utilized potentially as zero-dimensional unit of self-assembling fluorescent nanomaterials.

3.
Food Sci Nutr ; 12(3): 2122-2130, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455207

RESUMO

The association of dietary inflammatory index (DII) with constipation has not been well studied in general population. Therefore, the aim of this cross-sectional study was to investigate whether DII is associated with constipation in a large representative sample of the US population. Data were obtained from the 2005-2010 National Health and Nutrition Examination Survey (NHANES). A total of 12,308 participants aged ≥20 years were included in the analysis. DII was calculated based on a single 24-h dietary recall, and constipation was defined as having fewer than three bowel movements per week by the questionnaire on bowel health. Logistic regression analysis demonstrated a significant positive association between DII score and constipation, with each unit increase in DII score associated with a 20% increase in constipation risk (95% CI: 1.13-1.28). Subgroup analysis revealed high odds ratios (ORs) among individuals classified as "Other Race" (OR: 1.42, 95% CI: 1.12-1.80) and "Non-Hispanic White" (OR: 1.31, 95% CI: 1.12-1.54). In addition, RCS analysis indicated a nonlinear relationship between DII and constipation among individuals with a BMI less than 25 (OR: 1.17, 95% CI: 1.07-1.28), while the overall trend remained positive correlation (OR: 1.20, 95% CI: 1.10-1.31). Briefly, our study suggests that there may be a link between DII and constipation, which has implications for the development of dietary interventions aimed at preventing and managing constipation. However, this association was complex and variable depending on individual factors such as BMI and racial background and needed to establish longitudinal studies to confirm the underlying mechanisms between DII and constipation.

4.
Med Image Anal ; 97: 103241, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38897032

RESUMO

Although the U-shape networks have achieved remarkable performances in many medical image segmentation tasks, they rarely model the sequential relationship of hierarchical layers. This weakness makes it difficult for the current layer to effectively utilize the historical information of the previous layer, leading to unsatisfactory segmentation results for lesions with blurred boundaries and irregular shapes. To solve this problem, we propose a novel dual-path U-Net, dubbed I2U-Net. The newly proposed network encourages historical information re-usage and re-exploration through rich information interaction among the dual paths, allowing deep layers to learn more comprehensive features that contain both low-level detail description and high-level semantic abstraction. Specifically, we introduce a multi-functional information interaction module (MFII), which can model cross-path, cross-layer, and cross-path-and-layer information interactions via a unified design, making the proposed I2U-Net behave similarly to an unfolded RNN and enjoying its advantage of modeling time sequence information. Besides, to further selectively and sensitively integrate the information extracted by the encoder of the dual paths, we propose a holistic information fusion and augmentation module (HIFA), which can efficiently bridge the encoder and the decoder. Extensive experiments on four challenging tasks, including skin lesion, polyp, brain tumor, and abdominal multi-organ segmentation, consistently show that the proposed I2U-Net has superior performance and generalization ability over other state-of-the-art methods. The code is available at https://github.com/duweidai/I2U-Net.

5.
Med Image Anal ; 97: 103229, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38897033

RESUMO

Arrhythmia is a major cardiac abnormality in fetuses. Therefore, early diagnosis of arrhythmia is clinically crucial. Pulsed-wave Doppler ultrasound is a commonly used diagnostic tool for fetal arrhythmia. Its key step for diagnosis involves identifying adjacent measurable cardiac cycles (MCCs). As cardiac activity is complex and the experience of sonographers is often varied, automation can improve user-independence and diagnostic-validity. However, arrhythmias pose several challenges for automation because of complex waveform variations, which can cause major localization bias and missed or false detection of MCCs. Filtering out non-MCC anomalies is difficult because of large intra-class and small inter-class variations between MCCs and non-MCCs caused by agnostic morphological waveform variations. Moreover, rare arrhythmia cases are insufficient for classification algorithms to adequately learn discriminative features. Using only normal cases for training, we propose a novel hierarchical online contrastive anomaly detection (HOCAD) framework for arrhythmia diagnosis during test time. The contribution of this study is three-fold. First, we develop a coarse-to-fine framework inspired by hierarchical diagnostic logic, which can refine localization and avoid missed detection of MCCs. Second, we propose an online learning-based contrastive anomaly detection with two new anomaly scores, which can adaptively filter out non-MCC anomalies on a single image during testing. With these complementary efforts, we precisely determine MCCs for correct measurements and diagnosis. Third, to the best of our knowledge, this is the first reported study investigating intelligent diagnosis of fetal arrhythmia on a large-scale and multi-center ultrasound dataset. Extensive experiments on 3850 cases, including 266 cases covering three typical types of arrhythmias, demonstrate the effectiveness of the proposed framework.

6.
Int J Biol Macromol ; 260(Pt 2): 129527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246435

RESUMO

Oxidative stress-induced enteric neuropathy is an important factor in slow transit constipation (STC). Cistanche deserticola crude polysaccharides (CDCP) are natural antioxidants with various biological activities. We prepared CDCP through water-extract and alcohol-precipitation methods. The structural characteristics of CDCP were analyzed by infrared spectroscopy and methylation analysis. The results showed that CDCP was primarily composed of (1 â†’ 4)-linked glucans with minor amounts of pectic polysaccharides. Different doses of CDCP (100, 200, and 400 mg/kg) were administered to loperamide-induced STC mice to explore the therapeutic effects of CDCP. Compared with the untreated group, CDCP treatment significantly improved constipation symptoms, relevant gut-regulating peptides levels, colonic pathological damage, and colonic myenteric nerons injury. CDCP enhanced the antioxidant capacity by decreasing Malondialdehyde (MDA) content, increasing Superoxide Dismutase (SOD) activity and Reduced Glutathione (GSH) content. CDCP significantly reduced oxidative stress-induced injury by preserving mitochondrial function in the colonic myenteric plexus. Furthermore, the neuroprotective effects of CDCP might be associated with the Nrf2/Keap1 pathway. Thus, our findings first revealed the potential of CDCP to protect the colonic myenteric plexus against oxidative stress-induced damage in STC, establishing CDCP as promising candidates for natural medicine in the clinical management of STC.


Assuntos
Cistanche , Fármacos Neuroprotetores , Camundongos , Animais , Cistanche/química , Fármacos Neuroprotetores/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química
7.
Heart Rhythm ; 21(5): 600-609, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38266752

RESUMO

BACKGROUND: The motion relationship and time intervals of the pulsed-wave Doppler (PWD) spectrum are essential for diagnosing fetal arrhythmia. However, few technologies currently are available to automatically calculate fetal cardiac time intervals (CTIs). OBJECTIVE: The purpose of this study was to develop a fetal heart rhythm intelligent quantification system (HR-IQS) for the automatic extraction of CTIs and establish the normal reference range for fetal CTIs. METHODS: A total of 6498 PWD spectrums of 2630 fetuses over the junction between the left ventricular inflow and outflow tracts were recorded across 14 centers. E, A, and V waves were manually labeled by 3 experienced fetal cardiologists, with 17 CTIs extracted. Five-fold cross-validation was performed for training and testing of the deep learning model. Agreement between the manual and HR-IQS-based values was evaluated using the intraclass correlation coefficient and Spearman's rank correlation coefficient. The Jarque-Bera test was applied to evaluate the normality of CTIs' distributions, and the normal reference range of 17 CTIs was established with quantile regression. Arrhythmia subset was compared with the non-arrhythmia subset using the Mann-Whitney U test. RESULTS: Significant positive correlation (P <.001) and moderate-to-excellent consistency (P <.001) between the manual and HR-IQS automated measurements of CTIs was found. The distribution of CTIs was non-normal (P <.001). The normal range (2.5th to 97.5th percentiles) was successfully established for the 17 CTIs. CONCLUSIONS: Using our HR-IQS is feasible for the automated calculation of CTIs in practice and thus could provide a promising tool for the assessment of fetal rhythm and function.


Assuntos
Arritmias Cardíacas , Coração Fetal , Frequência Cardíaca Fetal , Humanos , Feminino , Estudos Prospectivos , Gravidez , Frequência Cardíaca Fetal/fisiologia , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Coração Fetal/diagnóstico por imagem , Coração Fetal/fisiologia , Idade Gestacional , Ultrassonografia Pré-Natal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA