Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
BMC Genomics ; 25(1): 593, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867153

RESUMO

BACKGROUND: Terpenes are important components of plant aromas, and terpene synthases (TPSs) are the key enzymes driving terpene diversification. In this study, we characterized the volatile terpenes in five different Chrysanthemum nankingense tissues. In addition, genome-wide identification and expression analysis of TPS genes was conducted utilizing an improved chromosome-scale genome assembly and tissue-specific transcriptomes. The biochemical functions of three representative TPSs were also investigated. RESULTS: We identified tissue-specific volatile organic compound (VOC) and volatile terpene profiles. The improved Chrysanthemum nankingense genome assembly was high-quality, including a larger assembled size (3.26 Gb) and a better contig N50 length (3.18 Mb) compared to the old version. A total of 140 CnTPS genes were identified, with the majority representing the TPS-a and TPS-b subfamilies. The chromosomal distribution of these TPS genes was uneven, and 26 genes were included in biosynthetic gene clusters. Closely-related Chrysanthemum taxa were also found to contain diverse TPS genes, and the expression profiles of most CnTPSs were tissue-specific. The three investigated CnTPS enzymes exhibited versatile activities, suggesting multifunctionality. CONCLUSIONS: We systematically characterized the structure and diversity of TPS genes across the Chrysanthemum nankingense genome, as well as the potential biochemical functions of representative genes. Our results provide a basis for future studies of terpene biosynthesis in chrysanthemums, as well as for the breeding of improved chrysanthemum varieties.


Assuntos
Alquil e Aril Transferases , Chrysanthemum , Genoma de Planta , Família Multigênica , Terpenos , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Chrysanthemum/genética , Chrysanthemum/enzimologia , Terpenos/metabolismo , Filogenia , Compostos Orgânicos Voláteis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
2.
BMC Plant Biol ; 24(1): 755, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39107750

RESUMO

BACKGROUND: Postharvest quality deterioration poses a significant challenge to the commercial value of fresh lotus seeds. Low temperature storage is widely employed as the primary method for preserving postharvest lotus seeds during storage and transportation. RESULTS: This approach effectively extends the storage life of lotus seeds, resulting in distinct physiological changes compared to room temperature storage, including a notable reduction in starch, protein, H2O2, and MDA content. Here, we conducted RNA-sequencing to generate global transcriptome profiles of postharvest lotus seeds stored under room or low temperature conditions. Principal component analysis (PCA) revealed that gene expression in postharvest lotus seeds demonstrated less variability during low temperature storage in comparison to room temperature storage. A total of 14,547 differentially expressed genes (DEGs) associated with various biological processes such as starch and sucrose metabolism, energy metabolism, and plant hormone signaling response were identified. Notably, the expression levels of DEGs involved in ABA signaling were significantly suppressed in contrast to room temperature storage. Additionally, nine weighted gene co-expression network analysis (WGCNA)-based gene molecular modules were identified, providing insights into the co-expression relationship of genes during postharvest storage. CONCLUSION: Our findings illuminate transcriptional differences in postharvest lotus seeds between room and low temperature storage, offering crucial insights into the molecular mechanisms of low temperature preservation in lotus seeds.


Assuntos
Temperatura Baixa , Sementes , Transcriptoma , Sementes/genética , Lotus/genética , Lotus/fisiologia , Lotus/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
3.
J Cell Physiol ; 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37393608

RESUMO

Anthraquinones are polycyclic compounds with an unsaturated diketone structure (quinoid moiety). As important secondary metabolites of plants, anthraquinones play an important role in the response of many biological processes and environmental factors. Anthraquinones are common in the human diet and have a variety of biological activities including anticancer, antibacterial, and antioxidant activities that reduce disease risk. The biological activity of anthraquinones depends on the substitution pattern of their hydroxyl groups on the anthraquinone ring structure. However, there is still a lack of systematic summary on the distribution, classification, and biosynthesis of plant anthraquinones. Therefore, this paper systematically reviews the research progress of the distribution, classification, biosynthesis, and regulation of plant anthraquinones. Additionally, we discuss future opportunities in anthraquinone research, including biotechnology, therapeutic products, and dietary anthraquinones.

4.
Molecules ; 23(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149578

RESUMO

The genus Sanguisorba, which contains about 30 species around the world and seven species in China, is the source of the medicinal plant Sanguisorba officinalis, which is commonly used as a hemostatic agent as well as to treat burns and scalds. Here we report the complete chloroplast (cp) genome sequences of four Sanguisorba species (S. officinalis, S. filiformis, S. stipulata, and S. tenuifolia var. alba). These four Sanguisorba cp genomes exhibit typical quadripartite and circular structures, and are 154,282 to 155,479 bp in length, consisting of large single-copy regions (LSC; 84,405⁻85,557 bp), small single-copy regions (SSC; 18,550⁻18,768 bp), and a pair of inverted repeats (IRs; 25,576⁻25,615 bp). The average GC content was ~37.24%. The four Sanguisorba cp genomes harbored 112 different genes arranged in the same order; these identical sections include 78 protein-coding genes, 30 tRNA genes, and four rRNA genes, if duplicated genes in IR regions are counted only once. A total of 39⁻53 long repeats and 79⁻91 simple sequence repeats (SSRs) were identified in the four Sanguisorba cp genomes, which provides opportunities for future studies of the population genetics of Sanguisorba medicinal plants. A phylogenetic analysis using the maximum parsimony (MP) method strongly supports a close relationship between S. officinalis and S. tenuifolia var. alba, followed by S. stipulata, and finally S. filiformis. The availability of these cp genomes provides valuable genetic information for future studies of Sanguisorba identification and provides insights into the evolution of the genus Sanguisorba.


Assuntos
Genoma de Cloroplastos , Sanguisorba/classificação , Sanguisorba/genética , Composição de Bases , Códon , Biologia Computacional/métodos , Éxons , Variação Genética , Genômica/métodos , Íntrons , Repetições de Microssatélites , Anotação de Sequência Molecular , Filogenia
5.
J Agric Food Chem ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365101

RESUMO

Lotus leaf, traditionally used as both edible tea and herbal medicine in Asia, contains nuciferine, a lipid-lowering and weight-loss compoud. The biosynthetic pathways of nuciferine in Nelumbo nucifera remain unclear. We characterized a specific N-methyltransferase, NnNMT, which had a novel function and catalyzed only nuciferine synthesis from the aporphine-type alkaloid N-nornuciferine. The expression profile of NnNMT was in agreement with BIA accumulation patterns in four tissues from three varieties, suggesting that NnNMT is involved in nucleiferine biosynthesis in Nelumbo nucifera. Protein engineering based on molecular docking and dynamic simulations revealed key residues (Y98, H208, F256, Y81, F329, G260, P76, and H80) crucial for NnNMT activity, with the F257A mutant showing increased efficiency. These findings enhance our understanding of aporphine alkaloid biosynthesis and support the development of lotus-based functional foods and medicinal applications.

6.
J Fungi (Basel) ; 10(9)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39330401

RESUMO

Based on a multi-locus phylogeny of a combined dataset of ITS, LSU, tef1-α, and rpb2 and comprehensive morphological analyses, we describe three new species from the Melanosporum group of genus Tuber and synonymize T. pseudobrumale and T. melanoexcavatum. Phylogenetically, the three newly described species, T. yunnanense, T. melanoumbilicatum and T. microexcavatum, differ significantly in genetic distance from any previously known species. Morphologically, T. yunnanense is distinctly different from its closest phylogenetically related species, T. longispinosum, due to its long shuttle-shape spores (average the ratio of spore length to spore width for all spores (Qm) = 1.74). Tuber melanoumbilicatum differs from the other species in having a cavity and long shuttle-shaped spores (Qm = 1.65). Although T. microexcavatum sampled ascomata have relatively low maturity, they can be distinguished from its closely related species T. pseudobrumale by the ascomata size, surface warts, and spore number per asci; additionally, phylogenetic analysis supports it as a new species. In addition, molecular analysis from 22 newly collected specimens and Genebank data indicate that T. pseudobrumale and T. melanoexcavatum are clustered into a single well-supported clade (Bootstrap (BS) = 100, posterior probabilities (PP) = 1.0); and morphological characteristics do not differ. Therefore, based on the above evidence and publication dates, we conclude that T. melanoexcavatum is a synonym of T. pseudobrumale. By taking into account current knowledge and combining the molecular, multigene phylogenetic clade arrangement and morphological data, we propose that the Melanosporum group should be divided into four subgroups. Diagnostic morphological features and an identification key of all known species in the Melanosporum group are also included. Finally, we also provide some additions to the knowledge of the characterization of T. pseudobrumale, T. variabilisporum, and T. pseudohimalayense included in subgroup 1 of the Melanosporum group.

7.
ACS Sens ; 9(7): 3540-3548, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38908004

RESUMO

Infection with drug-resistant bacteria poses a significant threat to human health. Judicious use of antibiotics could reduce the likelihood of bacterial resistance, which can be evaluated through antibiotic susceptibility testing (AST). This paper focuses on the application of a needle-like nanocapillary tip filled with chitosan (CS)/polyethylene pyrrolidone (PVP) hydrogel based on its specific pH-sensitive properties. The gel-filled nanocapillary has the potential to be used for electrical pH detection with a sensitivity of 3.06 nA/pH and a linear range from 7.3 to 4.3. Such sensitivity for pH measurement could be extended for monitoring of bacterial (such as Escherichia coli and Streptococcus salivarius) growth because of the relationship between pH and bacterial growth. Bacterial growth curves obtained using the hydrogel-filled nanocapillary showed good agreement with the OD600 method. Moreover, this device could be applied for rapid AST for tetracycline and norfloxacin on E. coli with minimum inhibitory concentrations of 2 and 0.125 µg/mL, respectively. This study expands the application of the hydrogel-based nanocapillary for bacterial research by monitoring changes in pH values.


Assuntos
Antibacterianos , Quitosana , Escherichia coli , Hidrogéis , Testes de Sensibilidade Microbiana , Quitosana/química , Quitosana/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Hidrogéis/química , Hidrogéis/farmacologia , Concentração de Íons de Hidrogênio , Povidona/química , Povidona/farmacologia
8.
Plant Physiol Biochem ; 210: 108591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583314

RESUMO

Fresh lotus seeds are gaining favor with consumers for their crunchy texture and natural sweetness. However, the intricacies of sugar accumulation in lotus seeds remain elusive, which greatly hinders the quality improvement of fresh lotus seeds. This study endeavors to elucidate this mechanism by identifying and characterizing the sucrose synthase (SUS) gene family in lotus. Comprising five distinct members, namely NnSUS1 to NnSUS5, each gene within this family features a C-terminal glycosyl transferase1 (GT1) domain. Among them, NnSUS1 is the predominately expressed gene, showing high transcript abundance in the floral organs and cotyledons. NnSUS1 was continuously up-regulated from 6 to 18 days after pollination (DAP) in lotus cotyledons. Furthermore, NnSUS1 demonstrates co-expression relationships with numerous genes involved in starch and sucrose metabolism. To investigate the function of NnSUS1, a transient overexpression system was established in lotus cotyledons, which confirmed the gene's contribution to sugar accumulation. Specifically, transient overexpression of NnSUS1 in seed cotyledons leads to a significant increase in the levels of total soluble sugar, including sucrose and fructose. These findings provide valuable theoretical insights for improving sugar content in lotus seeds through molecular breeding methods.


Assuntos
Cotilédone , Glucosiltransferases , Lotus , Proteínas de Plantas , Cotilédone/genética , Cotilédone/metabolismo , Cotilédone/enzimologia , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Lotus/genética , Lotus/enzimologia , Lotus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/enzimologia , Sacarose/metabolismo , Açúcares/metabolismo
9.
Int J Biol Macromol ; 279(Pt 1): 135104, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197619

RESUMO

Lotus seed starch holds vast potential for utilization across various industries, with its content and structure directly influencing the commercial value of lotus seeds. However, there has been limited information available on the molecular mechanisms underlying lotus seed starch biosynthesis. In this study, three starch branching enzyme homologs were identified in the lotus genome, designated as NnSBE1 to NnSBE3, which possess conserved CBM_48 and α_Aamy domains. Among them, NnSBE1 exhibited predominant expression, with abundant transcript levels observed in lotus seeds and flower-related organs. Expression of NnSBE1 remained consistently up-regulated in lotus cotyledons from 6 to 21 days after pollination. Additionally, a C2H2-type finger protein encoding gene, NnLOL1, co-expressed with NnSBE1 in lotus cotyledons. As a seed-predominantly expressed transcription factor, NnLOL1 was confirmed to activate NnSBE1 expression. Transient overexpression of NnSBE1 in lotus cotyledons resulted in a significant increase in both amylopectin and total starch content compared to the control. Furthermore, multiple variation sites within the NnSBE1 gene gave rise to diverse haplotypes between seed-lotus and other lotus varieties. These findings contribute to our understanding of the regulation mechanisms involved in lotus seed starch biosynthesis, offering valuable theoretical insights for the genetic improvement of lotus seed starch by molecular breeding strategies.

10.
Food Chem ; 457: 139925, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917567

RESUMO

Blueberry leaves (BBL) are a natural source with strong antioxidant activity, but bioactive compounds and their seasonal variation remain vague. Here, two major classes of compounds including four caffeoylquinic acids and eight flavonoids were identified in two southern highbush cultivars ("Lanmei" #1 and "Jewel") grown in China. Major bioactive compounds were discovered using an online HPLC post-column derivatization system and determined as neochlorogenic acid (NeoCA), chlorogenic acid (CA), rutin, hyperoside, and isoquercitrin. CA contributed the most to the BBL antioxidant activity. "Lanmei" showed significant advantages in terms of rutin content and antioxidant activity over "Jewel" (P < 0.05). The highest CA content (CAC) of juvenile "Jewel" leaves reached 17.9%. July was the optimum harvest time for both cultivars after fruiting stage. Total phenolic content (TPC) and Trolox equivalent antioxidant capacity (TEAC) of fresh BBL were accurately predicted by a portable near-infrared (NIR) device in a rapid, low-cost, and non-destructive way in situ.


Assuntos
Antioxidantes , Mirtilos Azuis (Planta) , Folhas de Planta , Estações do Ano , Espectroscopia de Luz Próxima ao Infravermelho , Folhas de Planta/química , Mirtilos Azuis (Planta)/química , Antioxidantes/química , Antioxidantes/análise , China , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Extratos Vegetais/química , Flavonoides/análise , Flavonoides/química
11.
Food Chem ; 449: 139183, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604028

RESUMO

Tartary buckwheat, celebrated as the "king of grains" for its flavonoid and phenolic acid richness, has health-promoting properties. Despite significant morphological and metabolic variations in mature achenes, research on their developmental process is limited. Utilizing Liquid chromatography-mass spectrometry and atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging, we conducted spatial-temporal metabolomics on two cultivars during achene development. Metabolic profiles including 17 phenolic acids and 83 flavonoids are influenced by both varietal distinctions and developmental intricacies. Notably, flavonols, as major flavonoids, accumulated with achene ripening and showed a tissue-specific distribution. Specifically, flavonol glycosides and aglycones concentrated in the embryo, while methylated flavonols and procyanidins in the hull. Black achenes at the green achene stage have higher bioactive compounds and enhanced antioxidant capacity. These findings provide insights into spatial and temporal characteristics of metabolites in Tartary buckwheat achenes and serve as a theoretical guide for selecting optimal resources for food production.


Assuntos
Fagopyrum , Metabolômica , Fagopyrum/química , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Flavonoides/metabolismo , Flavonoides/química , Flavonoides/análise , Espectrometria de Massa com Cromatografia Líquida , Extratos Vegetais/metabolismo , Extratos Vegetais/química , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
J Exp Bot ; 64(5): 1413-25, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23382554

RESUMO

Foliar NH4(+) exposure is linked to inhibition of lateral root (LR) formation. Here, the role of shoot ethylene in NH4(+)-induced inhibition of LR formation in Arabidopsis was investigated using wild-type and mutant lines that show either blocked ethylene signalling (etr1) or enhanced ethylene synthesis (eto1, xbat32). NH4(+) exposure of wild-type Arabidopsis led to pronounced inhibition of LR production chiefly in the distal root, and triggered ethylene evolution and enhanced activity of the ethylene reporter EBS:GUS in the shoot. It is shown that shoot contact with NH4(+) is necessary to stimulate shoot ethylene evolution. The ethylene antagonists Ag(+) and aminoethoxyvinylglycine (AVG) mitigated LR inhibition under NH4(+) treatment. The decrease in LR production was significantly greater for eto1-1 and xbat32 and significantly less for etr1-3. Enhanced shoot ethylene synthesis/signalling blocked recovery of LR production when auxin was applied in the presence of NH4(+) and negatively impacted shoot AUX1 expression. The findings highlight the important role of shoot ethylene evolution in NH4(+)-mediated inhibition of LR formation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Etilenos/biossíntese , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Compostos de Amônio Quaternário/farmacologia , Arabidopsis/efeitos dos fármacos , Glucuronidase/metabolismo , Ácidos Indolacéticos/farmacologia , Oniocompostos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Tioureia/análogos & derivados , Tioureia/farmacologia
13.
Gene ; 852: 147054, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36395971

RESUMO

Blueberry (Vaccinium corymbosum L.), a woody perennial bush in the genus Vaccinium, is an economically important and popular fruit crop worldwide. Development the superior cultivars, which including excellent fruit traits, not only means higher yielding and economic efficiency, but also produce fruit that to meet the preferences of different consumers. Excavating fruit quality-related genes, studying their functions, and using transgenic or molecular-assisted breeding are beneficial to the development of excellent blueberry varieties. Genetic transformation is an excellent way to study the function of genes in plants, however, it is a labor-intensive and time-consuming process to genetically transform many woody plants, including blueberry. Virus-induced gene silencing (VIGS) provides an efficient approach to knock-down the expression of target genes for functional analysis. In this study, tobacco rattle virus induced genes silencing (TRV-VIGS) was established in blueberry fruits using the VcANS gene as a reporter. The silenced sector of the skin of blueberry fruits injected with pTRV2 (plasmid Tobacco Rattle Virus, TRV-RNA2)::VcANS remained green or white at 25 days after agroinfiltration. In agroinfiltrated materials, the VcANS transcript levels were much lower in fruits with phenotypic changes (delayed color change) than in those infiltrated with the pTRV2 empty vector. Silencing of VcANS also affected the expression of other genes involved in the anthocyanin synthesis pathway. The experimental results support that VcANS can be used as an effective marker gene for VIGS system. In addition, the TRV-VIGS system has been successfully established in blueberry fruits, which provided an effective verification method for functional identification of unknown genes in blueberry fruits.


Assuntos
Mirtilos Azuis (Planta) , Vírus de Plantas , Inativação Gênica , Mirtilos Azuis (Planta)/genética , Frutas/genética , Nicotiana/genética , Vetores Genéticos , Vírus de Plantas/genética , Regulação da Expressão Gênica de Plantas
14.
Int J Biol Macromol ; 233: 123543, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740124

RESUMO

Mitogen-activated protein kinase (MAPK) cascade signaling pathway plays pivotal roles in various plant biological processes. However, systematic study of MAPK cascade gene families is yet to be conducted in lotus. Herein, 198 putative MAPK genes, including 152 MAP3Ks, 15 MKKs, and 31 MPKs genes were identified in Nelumbo. Segmental duplication was identified as the predominant factor driving MAPK cascade gene family expansion in lotus. MAPK cascade genes in N. nucifera and N. lutea shared high degree of sequence homologies, with 84, 9, and 19 homologous MAP3K, MKK, and MPK gene pairs being detected between the two species, respectively, with most genes predominantly undergoing purifying selection. Gene expression profiling indicated that NnMAPK cascade genes were extensively involved in plant development and submergence stress response. Co-expression analysis revealed potential interaction between transcription factors (TFs) and NnMAPK cascade genes in various biological processes. NnMKK showed predicted interactions with multiple NnMAP3K or NnMPK proteins, which suggested that functional diversity of MAPK cascade genes could be as a result of their complex protein interaction mechanisms. This first systematic analysis of MAPK cascade families in lotus provides deeper insights into their evolutionary dynamics and functional properties, which potentially could be crucial for lotus genetic improvement.


Assuntos
Nelumbo , Nelumbo/genética , Genoma de Planta/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Família Multigênica , Filogenia , Regulação da Expressão Gênica de Plantas
15.
J Plant Physiol ; 280: 153891, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36495813

RESUMO

1,9-decanediol (1,9-D) is a biological nitrification inhibitor secreted in roots, which effectively inhibits soil nitrifier activity and reduces nitrogen loss from agricultural fields. However, the effects of 1,9-D on plant root growth and the involvement of signaling pathways in the plant response to 1,9-D have not been investigated. Here, we report that 1,9-D, in the 100-400 µM concentration range, promotes primary root length in Arabidopsis seedlings at 3d and 5d, by 10.1%-33.3% and 6.9%-32.6%, and, in a range of 50-200 µM, leads to an increase in the number of lateral roots. 150 µM 1,9-D was found optimum for the positive regulation of root growth. qRT-PCR analysis reveals that 1,9-D can significantly increase AtABA3 gene expression and that a mutation in ABA3 results in insensitivity of root growth to 1,9-D. Moreover, through pharmacological experiments, we show that exogenous addition of ABA (abscisic acid) with 1,9-D enhances primary root length by 23.5%-63.3%, and an exogenous supply of 1,9-D with the ABA inhibitor Flu reduces primary root length by 1.0%-14.3%. Primary root length of the pin2/eir1-1 is shown to be insensitive to both exogenous addition of 1,9-D and ABA, indicating that the auxin carrier PIN2/EIR1 is involved in promotion of root growth by 1,9-D. These results suggest a novel for 1,9-D in regulating plant root growth through ABA and auxin signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Oryza/metabolismo , Nitrificação , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Heliyon ; 9(6): e16138, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37251486

RESUMO

Benzylisoquinoline alkaloids in lotus (Nelumbo nucifera) seed plumules and leaves exhibit significant tissue specificity for their pharmacological effects and potential nutritional properties. Herein, 46 benzylisoquinoline alkaloids were identified via UPLC-QTOF-HRMS, of which 9 were annotated as glycosylated monobenzylisoquinoline alkaloids concentrated in the seed plumules. The spatial distribution of targeted benzylisoquinoline alkaloids in leaves, seed plumules, and milky sap was determined via MALDI-MSI. Furthermore, 37 Nelumbo cultivars were investigated using targeted metabolomics to provide insights into functional tea development. While aporphine alkaloids comprised the main compounds present in lotus leaves, bisbenzylisoquinoline alkaloids were the main compounds in lotus plumules, where glycosylation primarily occurs. These findings can help understand the distribution of benzylisoquinoline alkaloids in lotus tissue and the directional breeding of varieties enriched with specific chemical functional groups for nutritional and pharmacological applications.

17.
Environ Pollut ; 317: 120805, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470457

RESUMO

Microplastics (MPs) accumulation in farmland has attracted global concern. Smallholder farming is the dominant type in China's agriculture. Compared with large-scale farming, smallholder farming is not constrained by restrictive environmental policies and public awareness about pollution. Consequently, the degree to which smallholder farming is associated with MP pollution in soils is largely unknown. Here, we collected soil samples from both smallholder and large-scale vegetable production systems to determine the distribution and characteristics of MPs. MP abundance in vegetable soils was 147.2-2040.4 MP kg-1 (averaged with 500.8 MP kg-1). Soil MP abundance under smallholder cultivation (730.9 MP kg-1) was twice that found under large-scale cultivation (370.7 MP kg-1). MP particle sizes in smallholder and large-scale farming were similar, and were mainly <1 mm. There were also differences in MP characteristics between the two types of vegetable soils: fragments (60%) and fibers (34%) were dominant under smallholder cultivation, while fragments (42%), fibers (42%), and films (11%) were dominant under large-scale cultivation. We observed a significant difference in the abundance of fragments and films under smallholder versus large-scale cultivation; the main components of MPs under smallholder cultivation were PP (34%), PE (28%), and PE-PP (10%), while these were PE (29%), PP (16%), PET (16%), and PE-PP (13%) under large-scale cultivation. By identifying the shape and composition of microplastics, it can be inferred that agricultural films were not the main MP pollution source in vegetable soil. We show that smallholder farming produces more microplastics pollution than large-scale farming in vegetable soil.


Assuntos
Microplásticos , Plásticos , Fazendas , Verduras , Agricultura , Solo , Monitoramento Ambiental
18.
Hortic Res ; 10(2): uhac276, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789257

RESUMO

Lotus (Nelumbo nucifera), an ancient aquatic plant, possesses a unique pharmacological activity that is primarily contributed by benzylisoquinoline alkaloids (BIAs). However, only few genes and enzymes involved in BIA biosynthesis in N. nucifera have been isolated and characterized. In the present study we identified the regiopromiscuity of an O-methyltransferase, designated NnOMT6, isolated from N. nucifera; NnOMT6 was found to catalyze the methylation of monobenzylisoquinoline 6-O/7-O, aporphine skeleton 6-O, phenylpropanoid 3-O, and protoberberine 2-O. We further probed the key residues affecting NnOMT6 activity via molecular docking and molecular dynamics simulation. Verification using site-directed mutagenesis revealed that residues D316, N130, L135, N176A, D269, and E328 were critical for BIA O-methyltransferase activities; furthermore, N323A, a mutant of NnOMT6, demonstrated a substantial increase in catalytic efficiency for BIAs and a broader acceptor scope compared with wild-type NnOMT6. To the best of our knowledge, this is the first study to report the O-methyltransferase activity of an aporphine skeleton without benzyl moiety substitutions in N. nucifera. The study findings provide biocatalysts for the semisynthesis of related medical compounds and give insights into protein engineering to strengthen O-methyltransferase activity in plants.

19.
Planta ; 235(2): 239-52, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21866344

RESUMO

Ammonium (NH(4)(+)) toxicity is a significant agricultural problem globally, compromising crop growth and productivity in many areas. However, the molecular mechanisms of NH(4)(+) toxicity are still poorly understood, in part due to a lack of valuable genetic resources. Here, a novel Arabidopsis mutant, amos2 (ammonium overly sensitive 2), displaying hypersensitivity to NH(4) (+) in both shoots and roots, was isolated. The mutant exhibits the hallmarks of NH(4)(+) toxicity at significantly elevated levels: severely suppressed shoot biomass, increased leaf chlorosis, and inhibition of lateral root formation. Amos2 hypersensitivity is associated with excessive NH(4)(+) accumulation in shoots and a reduction in tissue potassium (K(+)), calcium (Ca(2+)), and magnesium (Mg(2+)). We show that the lesion is specific to the NH(4)(+) ion, is independent of NH(4)(+) metabolism, and can be partially rescued by elevated external K(+). The amos2 lesion was mapped to a 16-cM interval on top of chromosome 1, where no similar mutation has been previously mapped. Our study identifies a novel locus controlling cation homeostasis under NH(4)(+) stress and provides a tool for the future identification of critical genes involved in the development of NH(4)(+) toxicity.


Assuntos
Sulfato de Amônio/farmacologia , Arabidopsis/genética , Genes de Plantas , Compostos de Amônio Quaternário/metabolismo , Sulfato de Amônio/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Cálcio/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Meios de Cultura/metabolismo , Homeostase , Magnésio/metabolismo , Mutação , Fenótipo , Doenças das Plantas/induzido quimicamente , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Potássio/metabolismo , Potássio/farmacologia , Especificidade da Espécie
20.
J Exp Bot ; 63(10): 3777-88, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22407650

RESUMO

Root gravitropism is affected by many environmental stresses, including salinity, drought, and nutrient deficiency. One significant environmental stress, excess ammonium (NH(4)(+)), is well documented to inhibit root elongation and lateral root formation, yet little is known about its effects on the direction of root growth. We show here that inhibition of root elongation upon elevation of external NH(4)(+) is accompanied by a loss in root gravitropism (agravitropism) in Arabidopsis. Addition of potassium (K(+)) to the treatment medium partially rescued the inhibition of root elongation by high NH(4)(+) but did not improve gravitropic root curvature. Expression analysis of the auxin-responsive reporter gene DR5::GUS revealed that NH(4)(+) treatment delayed the development of gravity-induced auxin gradients across the root cap but extended their duration once initiated. Moreover, the ß-glucuronidase (GUS) signal intensity in root tip cells was significantly reduced under high NH(4)(+) treatment over time. The potassium carrier mutant trh1 displayed different patterns of root gravitropism and DR5::GUS signal intensity in root apex cells compared with the wild type in response to NH(4)(+). Together, the results demonstrate that the effects of NH(4)(+) on root gravitropism are related to delayed lateral auxin redistribution and the TRH1 pathway, and are largely independent of inhibitory effects on root elongation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Regulação para Baixo , Gravitropismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Compostos de Amônio Quaternário/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA