Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Mol Carcinog ; 63(3): 417-429, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37983722

RESUMO

Triple-negative breast cancer (TNBC) is the most lethal and aggressive subtype of breast cancer, and chemoresistance is the major determinant of TNBC treatment failure. This study explores the molecular mechanism of TNBC chemoresistance. The Cancer Genome Atlas, breast cancer integrative platform, and GEPIA databases were used to analyze the expression and correlation of YTHDF1 and seven in absentia homology 2 (SIAH2) in breast cancer. Knockdown of YTHDF1 and SIAH2, or overexpression of SIAH2 in vitro and in vivo, was conducted to evaluate the impact of changes in YTHDF1 and SIAH2 expression on TNBC cell proliferation, apoptosis, stemness, drug resistance, and Hippo pathway gene expression. YTHDF1 and SIAH2 were highly expressed in breast cancer patients and TNBC cells. Knockdown of YTHDF1 and SIAH2 significantly inhibited proliferation and stemness and promoted apoptosis and chemosensitivity of TNBC cells. Mechanistically, the knockdown of YTHDF1 inhibited the expression of SIAH2, thereby downregulating the Hippo pathway, which inhibited proliferation and stemness and promoted apoptosis and chemosensitivity of TNBC cells. The current findings revealed the regulatory mechanism of YTHDF1 in TNBC and clarified the role of the YTHDF1/SIAH2 axis in TNBC drug resistance and stemness. This could provide new insights into the vital role of targeting YTHDF1/SIAH2 to suppress drug resistance and stemness in TNBC cells.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Ligação a RNA/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
2.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38284659

RESUMO

Uncovering the mystery of efficient and directional energy transfer in photosynthetic organisms remains a critical challenge in quantum biology. Recent experimental evidence and quantum theory developments indicate the significance of quantum features of molecular vibrations in assisting photosynthetic energy transfer, which provides the possibility of manipulating the process by controlling molecular vibrations. Here, we propose and theoretically demonstrate efficient manipulation of photosynthetic energy transfer by using vibrational strong coupling between the vibrational state of a Fenna-Matthews-Olson (FMO) complex and the vacuum state of an optical cavity. Specifically, based on a full-quantum analytical model to describe the strong coupling effect between the optical cavity and molecular vibration, we realize efficient manipulation of energy transfer efficiency (from 58% to 92%) and energy transfer time (from 20 to 500 ps) in one branch of FMO complex by actively controlling the coupling strength and the quality factor of the optical cavity under both near-resonant and off-resonant conditions, respectively. Our work provides a practical scenario to manipulate photosynthetic energy transfer by externally interfering molecular vibrations via an optical cavity and a comprehensible conceptual framework for researching other similar systems.

3.
Exp Cell Res ; 390(2): 111928, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32156599

RESUMO

Podocyte injury leads to impaired filtration barrier function of the kidney that underlies the pathophysiology of idiopathic nephrotic syndrome (INS), the most common NS occurring in children. The heat shock protein 90 (Hsp90) is involved in the regulation of apoptosis in a variety of cell types, however, little is known about its role in podocytes and whether it associated with NS. Here, we show that Hsp90 is upregulated in glomeruli podocytes from mice with adriamycin (ADR)-induced nephropathy, and that it is also upregulated in an immortalized podocyte cell line treated with ADR in vitro, together suggesting an association of Hsp90 upregulation in podocytes with NS pathogenesis. Functionally, Hsp90 inhibition with PU-H71 aggravates ADR-induced podocyte apoptosis and worsens the impairment of filtration barrier function. Mechanistically, Hsp90 inhibition with PU-H71 enhances the activation of intrinsic apoptotic pathway, and moreover, blockade of podocyte apoptosis with zVAD-fmk (aVAD), a pan-caspase inhibitor, abrogates effects of Hsp90 inhibition on filtration barrier function of ADR-treated podocytes, thus demonstrating that Hsp90 inhibition aggravates ADR-induced podocyte injury through intrinsic apoptosis pathway. In sum, this study reveals a detrimental role of Hsp90 inhibition in podocyte injury, which may offer it as a potential therapeutic target in NS therapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Proteínas de Choque Térmico HSP90/genética , Síndrome Nefrótica/genética , Podócitos/efeitos dos fármacos , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/genética , Benzodioxóis/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Linhagem Celular , Citosol/efeitos dos fármacos , Citosol/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Síndrome Nefrótica/induzido quimicamente , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Podócitos/metabolismo , Podócitos/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Purinas/farmacologia , Transdução de Sinais , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
4.
Sensors (Basel) ; 21(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803661

RESUMO

This paper presents a multi-spectral photometric stereo (MPS) method based on image in-painting, which can reconstruct the shape using a multi-spectral image with a laser line. One of the difficulties in multi-spectral photometric stereo is to extract the laser line because the required illumination for MPS, e.g., red, green, and blue light, may pollute the laser color. Unlike previous methods, through the improvement of the network proposed by Isola, a Generative Adversarial Network based on image in-painting was proposed, to separate a multi-spectral image with a laser line into a clean laser image and an uncorrupted multi-spectral image without the laser line. Then these results were substituted into the method proposed by Fan to obtain high-precision 3D reconstruction results. To make the proposed method applicable to real-world objects, a rendered image dataset obtained using the rendering models in ShapeNet has been used for training the network. Evaluation using the rendered images and real-world images shows the superiority of the proposed approach over several previous methods.

5.
Sensors (Basel) ; 20(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114078

RESUMO

In recent years, deep learning models have achieved remarkable successes in various applications, such as pattern recognition, computer vision, and signal processing. However, high-performance deep architectures are often accompanied by a large storage space and long computational time, which make it difficult to fully exploit many deep neural networks (DNNs), especially in scenarios in which computing resources are limited. In this paper, to tackle this problem, we introduce a method for compressing the structure and parameters of DNNs based on neuron agglomerative clustering (NAC). Specifically, we utilize the agglomerative clustering algorithm to find similar neurons, while these similar neurons and the connections linked to them are then agglomerated together. Using NAC, the number of parameters and the storage space of DNNs are greatly reduced, without the support of an extra library or hardware. Extensive experiments demonstrate that NAC is very effective for the neuron agglomeration of both the fully connected and convolutional layers, which are common building blocks of DNNs, delivering similar or even higher network accuracy. Specifically, on the benchmark CIFAR-10 and CIFAR-100 datasets, using NAC to compress the parameters of the original VGGNet by 92.96% and 81.10%, respectively, the compact network obtained still outperforms the original networks.


Assuntos
Análise por Conglomerados , Compressão de Dados , Redes Neurais de Computação , Neurônios , Algoritmos
6.
Sensors (Basel) ; 20(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093019

RESUMO

Textures are the most important element for simulating real-world scenes and providing realistic and immersive sensations in many applications. Procedural textures can simulate a broad variety of surface textures, which is helpful for the design and development of new sensors. Procedural texture generation is the process of creating textures using mathematical models. The input to these models can be a set of parameters, random values generated by noise functions, or existing texture images, which may be further processed or combined to generate new textures. Many methods for procedural texture generation have been proposed, but there has been no comprehensive survey or comparison of them yet. In this paper, we present a review of different procedural texture generation methods, according to the characteristics of the generated textures. We divide the different generation methods into two categories: structured texture and unstructured texture generation methods. Example textures are generated using these methods with varying parameter values. Furthermore, we survey post-processing methods based on the filtering and combination of different generation models. We also present a taxonomy of different models, according to the mathematical functions and texture samples they can produce. Finally, a psychophysical experiment is designed to identify the perceptual features of the example textures. Finally, an analysis of the results illustrates the strengths and weaknesses of these methods.

7.
Sensors (Basel) ; 18(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498703

RESUMO

Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.

8.
J Opt Soc Am A Opt Image Sci Vis ; 31(5): 935-43, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979624

RESUMO

The majority of work on the perception of gloss has been performed using smooth surfaces (e.g., spheres). Previous studies that have employed more complex surfaces reported that increasing mesoscale roughness increases perceived gloss [Psychol. Sci.19, 196 (2008), J. Vis.10(9), 13 (2010), Curr. Biol.22, 1909 (2012)]. We show that the use of realistic rendering conditions is important and that, in contrast to [Psychol. Sci.19, 196 (2008), J. Vis.10(9), 13 (2010)], after a certain point increasing roughness further actually reduces glossiness. We investigate five image statistics of estimated highlights and show that for our stimuli, one in particular, which we term "percentage of highlight area," is highly correlated with perceived gloss. We investigate a simple model that explains the unimodal, nonmonotonic relationship between mesoscale roughness and percentage highlight area.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38607717

RESUMO

Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues, i.e., modeling the relationship between surface orientation and intensity at each pixel. Photometric stereo prevails in superior per-pixel resolution and fine reconstruction details. However, it is a complicated problem because of the non-linear relationship caused by non-Lambertian surface reflectance. Recently, various deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces. This paper provides a comprehensive review of existing deep learning-based calibrated photometric stereo methods utilizing orthographic cameras and directional light sources. We first analyze these methods from different perspectives, including input processing, supervision, and network architecture. We summarize the performance of deep learning photometric stereo models on the most widely-used benchmark data set. This demonstrates the advanced performance of deep learning-based photometric stereo methods. Finally, we give suggestions and propose future research trends based on the limitations of existing models.

10.
IEEE Trans Neural Netw Learn Syst ; 34(7): 3357-3370, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34757914

RESUMO

Sea subsurface temperature, an essential component of aquatic wildlife, underwater dynamics, and heat transfer with the sea surface, is affected by global warming in climate change. Existing research is commonly based on either physics-based numerical models or data-based models. Physical modeling and machine learning are traditionally considered as two unrelated fields for the sea subsurface temperature prediction task, with very different scientific paradigms (physics-driven and data-driven). However, we believe that both methods are complementary to each other. Physical modeling methods can offer the potential for extrapolation beyond observational conditions, while data-driven methods are flexible in adapting to data and are capable of detecting unexpected patterns. The combination of both approaches is very attractive and offers potential performance improvement. In this article, we propose a novel framework based on a generative adversarial network (GAN) combined with a numerical model to predict sea subsurface temperature. First, a GAN-based model is used to learn the simplified physics between the surface temperature and the target subsurface temperature in the numerical model. Then, observation data are used to calibrate the GAN-based model parameters to obtain a better prediction. We evaluate the proposed framework by predicting daily sea subsurface temperature in the South China Sea. Extensive experiments demonstrate the effectiveness of the proposed framework compared to existing state-of-the-art methods.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Temperatura , China , Física
11.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37630084

RESUMO

Compound eye cameras are a vital component of bionics. Compound eye lenses are currently used in light field cameras, monitoring imaging, medical endoscopes, and other fields. However, the resolution of the compound eye lens is still low at the moment, which has an impact on the application scene. Photolithography and negative pressure molding were used to create a double-glued multi-focal bionic compound eye camera in this study. The compound eye camera has 83 microlenses, with ommatidium diameters ranging from 400 µm to 660 µm, and a 92.3 degree field-of-view angle. The double-gluing structure significantly improves the optical performance of the compound eye lens, and the spatial resolution of the ommatidium is 57.00 lp mm-1. Additionally, the measurement of speed is investigated. This double-glue compound eye camera has numerous potential applications in the military, machine vision, and other fields.

12.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 12960-12977, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36107900

RESUMO

Image harmonization, aiming to make composite images look more realistic, is an important and challenging task. The composite, synthesized by combining foreground from one image with background from another image, inevitably suffers from the issue of inharmonious appearance caused by distinct imaging conditions, i.e., lights. Current solutions mainly adopt an encoder-decoder architecture with convolutional neural network (CNN) to capture the context of composite images, trying to understand what it should look like in the foreground referring to surrounding background. In this work, we seek to solve image harmonization with Transformer, by leveraging its powerful ability of modeling long-range context dependencies, for adjusting foreground light to make it compatible with background light while keeping structure and semantics unchanged. We present the design of our two vision Transformer frameworks and corresponding methods, as well as comprehensive experiments and empirical study, demonstrating the power of Transformer and investigating the Transformer for vision. Our methods achieve state-of-the-art performance on the image harmonization as well as four additional vision and graphics tasks, i.e., image enhancement, image inpainting, white-balance editing, and portrait relighting, indicating the superiority of our work. Code, models, more results and details can be found at the project website http://ouc.ai/project/HarmonyTransformer.

13.
Micromachines (Basel) ; 14(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838120

RESUMO

To meet the challenge of preparing a high-resolution compound eye, this paper proposes a multi-focal-length meniscus compound eye based on MEMS negative pressure molding technology. The aperture is increased, a large field of view angle of 101.14° is obtained, and the ommatidia radius of each stage is gradually increased from 250 µm to 440 µm. A meniscus structure is used to improve the imaging quality of the marginal compound eye so that its resolution can reach 36.00 lp/mm. The prepared microlenses have a uniform shape and a smooth surface, and both panoramic image stitching and moving object tracking are achieved. This technology has great potential for application in many fields, including automatic driving, machine vision, and medical endoscopy.

14.
IEEE Trans Image Process ; 32: 4142-4155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37459262

RESUMO

As a prerequisite step of scene text reading, scene text detection is known as a challenging task due to natural scene text diversity and variability. Most existing methods either adopt bottom-up sub-text component extraction or focus on top-down text contour regression. From a hybrid perspective, we explore hierarchical text instance-level and component-level representation for arbitrarily-shaped scene text detection. In this work, we propose a novel Hierarchical Graph Reasoning Network (HGR-Net), which consists of a Text Feature Extraction Network (TFEN) and a Text Relation Learner Network (TRLN). TFEN adaptively learns multi-grained text candidates based on shared convolutional feature maps, including instance-level text contours and component-level quadrangles. In TRLN, an inter-text graph is constructed to explore global contextual information with position-awareness between text instances, and an intra-text graph is designed to estimate geometric attributes for establishing component-level linkages. Next, we bridge the cross-feed interaction between instance-level and component-level, and it further achieves hierarchical relational reasoning by learning complementary graph embeddings across levels. Experiments conducted on three publicly available benchmarks SCUT-CTW1500, Total-Text, and ICDAR15 have demonstrated that HGR-Net achieves state-of-the-art performance on arbitrary orientation and arbitrary shape scene text detection.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37922172

RESUMO

In this paper, we propose a novel method, namely GR-PSN, which learns surface normals from photometric stereo images and generates the photometric images under distant illumination from different lighting directions and surface materials. The framework is composed of two subnetworks, named GeometryNet and ReconstructNet, which are cascaded to perform shape reconstruction and image rendering in an end-to-end manner. ReconstructNet introduces additional supervision for surface-normal recovery, forming a closed-loop structure with GeometryNet. We also encode lighting and surface reflectance in ReconstructNet, to achieve arbitrary rendering. In training, we set up a parallel framework to simultaneously learn two arbitrary materials for an object, providing an additional transform loss. Therefore, our method is trained based on the supervision by three different loss functions, namely the surface-normal loss, reconstruction loss, and transform loss. We alternately input the predicted surface-normal map and the ground-truth into ReconstructNet, to achieve stable training for ReconstructNet. Experiments show that our method can accurately recover the surface normals of an object with an arbitrary number of inputs, and can re-render images of the object with arbitrary surface materials. Extensive experimental results show that our proposed method outperforms those methods based on a single surface recovery network and shows realistic rendering results on 100 different materials. Our code can be found in https://github.com/Kelvin-Ju/GR-PSN.

16.
PLoS One ; 18(2): e0282014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36802401

RESUMO

The content and composition of soil organic carbon (SOC) can characterize soil carbon storage capacity, which varies significantly between habitats. Ecological restoration in coal mining subsidence land forms a variety of habitats, which are ideal to study the effects of habitats on SOC storage capacity. Based on the analysis of the content and composition of SOC in three habitats (farmland, wetland and lakeside grassland) generated by different restoration time of the farmland which was destroyed by coal mining subsidence, we found that farmland had the highest SOC storage capacity among the three habitats. Both dissolved organic carbon (DOC) and heavy fraction organic carbon (HFOC) exhibited higher concentrations in the farmland (20.29 mg/kg, 6.96 mg/g) than in the wetland (19.62 mg/kg, 2.47 mg/g) or lakeside grassland (5.68 mg/kg, 2.31 mg/g), and the concentrations increased significantly over time, owing to the higher content of nitrogen in the farmland. The wetland and lakeside grassland needed more time than the farmland to recover the SOC storage capacity. The findings illustrate that the SOC storage capacity of farmland destroyed by coal mining subsidence could be restored through ecological restoration and indicate that the recovery rate depends on the reconstructed habitat types, among which farmland shows great advantages mainly due to the nitrogen addition.


Assuntos
Minas de Carvão , Solo , Carbono/análise , Ecossistema , Nitrogênio/análise , China
17.
Environ Sci Pollut Res Int ; 30(47): 104304-104318, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37700132

RESUMO

Soil microbiota, which plays a fundamental role in ecosystem functioning, is sensitive to environmental changes. Studying soil microbial ecological patterns can help to understand the consequences of environmental disturbances on soil microbiota and hence ecosystem services. The different habitats with critical environmental gradients generated through the restoration of coal-mining subsidence areas provide an ideal area to explore the response of soil microbiota to environmental changes. Here, based on high-throughput sequencing, we revealed the patterns of soil bacterial and fungal communities in habitats with different land-use types (wetland, farmland, and grassland) and with different restored times which were generated during the ecological restoration of a typical coal-mining subsidence area in Jining City, China. The α-diversity of bacterial was higher in wetland than in farmland and grassland, while that of fungi had no discrepancy among the three habitats. The ß-diversity of bacterial community in the grassland was lower than in the farmland, and fungal community was significant different in all three habitats, showing wetland, grassland, and farmland from high to low. The ß-diversity of the bacterial community decreased with restoration time while that of the fungal community had no significant change in the longer-restoration-time area. Furthermore, soil electrical conductivity was the most important driver for both bacterial and fungal communities. Based on the taxonomic difference among different habitats, we identified a group of biomarkers for each habitat. The study contributes to understand the microbial patterns during the ecological restoration of coal-mining subsidence areas, which has implications for the efficient ecological restoration of subsidence areas.


Assuntos
Minas de Carvão , Microbiota , Micobioma , Microbiologia do Solo , Bactérias , Solo , China , Carvão Mineral
18.
Artigo em Inglês | MEDLINE | ID: mdl-37030763

RESUMO

We present MobileSky, the first automatic method for real-time high-quality sky replacement for mobile AR applications. The primary challenge of this task is how to extract sky regions in camera feed both quickly and accurately. While the problem of sky replacement is not new, previous methods mainly concern extraction quality rather than efficiency, limiting their application to our task. We aim to provide higher quality, both spatially and temporally consistent sky mask maps for all camera frames in real time. To this end, we develop a novel framework that combines a new deep semantic network called FSNet with novel post-processing refinement steps. By leveraging IMU data, we also propose new sky-aware constraints such as temporal consistency, position consistency, and color consistency to help refine the weakly classified part of the segmentation output. Experiments show that our method achieves an average of around 30 FPS on off-the-shelf smartphones and outperforms the state-of-the-art sky replacement methods in terms of execution speed and quality. In the meantime, our mask maps appear to be visually more stable across frames. Our fast sky replacement method enables several applications, such as AR advertising, art making, generating fantasy celestial objects, visually learning about weather phenomena, and advanced video-based visual effects. To facilitate future research, we also create a new video dataset containing annotated sky regions with IMU data.

19.
J Opt Soc Am A Opt Image Sci Vis ; 29(4): 627-36, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22472842

RESUMO

This paper investigates the use of photometric stereo (PS) with reflectance functions that are diffuse but not Lambertian. We show that, for the special case where light sources are arranged at 90° intervals around the optical axis, standard PS is not limited to Lambertian surfaces, and we define criteria for its use. A series of rough test surfaces are used as models for surface microstructure-we found that the Oren Nayar (ON) reflectance model accurately predicted the surfaces' reflectance functions. The ON model does not meet our theoretical criteria for using PS, but PS performs well in simulations if the microroughness is moderate (rms slope <0.3). When PS was applied to real surfaces, the estimated and actual slopes were highly correlated, but there were significant errors in the slope estimates for the rougher samples.

20.
IEEE Trans Image Process ; 31: 5841-5855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36054394

RESUMO

Existing deep-network based texture synthesis approaches all focus on fine-grained control of texture generation by synthesizing images from exemplars. Since the networks employed by most of these methods are always tied to individual exemplar textures, a large number of individual networks have to be trained when modeling various textures. In this paper, we propose to generate textures directly from coarse-grained control or high-level guidance, such as texture categories, perceptual attributes and semantic descriptions. We fulfill the task by parsing the generation process of a texture into the three-level Bayesian hierarchical model. A coarse-grained signal first determines a distribution over Markov random fields. Then a Markov random field is used to model the distribution of the final output textures. Finally, an output texture is generated from the sampled Markov random field distribution. At the bottom level of the Bayesian hierarchy, the isotropic and ergodic characteristics of the textures favor a construction that consists of a fully convolutional network. The proposed method integrates texture creation and texture synthesis into one pipeline for real-time texture generation, and enables users to readily obtain diverse textures with arbitrary scales from high-level guidance only. Extensive experiments demonstrate that the proposed method is capable of generating plausible textures that are faithful to user-defined control, and achieving impressive texture metamorphosis by interpolation in the learned texture manifold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA