Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Theor Appl Genet ; 137(6): 144, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809285

RESUMO

KEY MESSAGE: A wild melon reference genome elucidates the genomic basis of fruit acidity domestication. Structural variants (SVs) have been reported to impose major effects on agronomic traits, representing a significant contributor to crop domestication. However, the landscape of SVs between wild and cultivated melons is elusive and how SVs have contributed to melon domestication remains largely unexplored. Here, we report a 379-Mb chromosome-scale genome of a wild progenitor melon accession "P84", with a contig N50 of 14.9 Mb. Genome comparison identifies 10,589 SVs between P84 and four cultivated melons with 6937 not characterized in previously analysis of 25 melon genome sequences. Furthermore, the population-scale genotyping of these SVs was determined in 1175 accessions, and 18 GWAS signals including fruit acidity, fruit length, fruit weight, fruit color and sex determination were detected. Based on these genotyped SVs, we identified 3317 highly diverged SVs between wild and cultivated melons, which could be the potential SVs associated with domestication-related traits. Furthermore, we identify novel SVs affecting fruit acidity and proposed the diverged evolutionary trajectories of CmPH, a key regulator of melon fruit acidity, during domestication and selection of different populations. These results will offer valuable resources for genomic studies and genetic improvement in melon.


Assuntos
Cucurbitaceae , Domesticação , Frutas , Genoma de Planta , Cucurbitaceae/genética , Cucurbitaceae/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Fenótipo , Genótipo , Locos de Características Quantitativas , Variação Estrutural do Genoma , Genes de Plantas
2.
Plant Cell Physiol ; 60(10): 2129-2140, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31165159

RESUMO

Apple ring rot is a severe disease that affects the yield and quality of apple fruits worldwide. However, the underlying molecular mechanism that involved in this process still remains largely unexplored. Here, we report that apple POZ/BTB CONTAINING-PROTEIN 1 (MdPOB1), a BTB-BACK domain E3 ligase protein, functions to suppress apple pathogen defense against Botryosphaeria dothidea (B. dothidea). Both in vitro and in vivo assays indicated that MdPOB1 interacted directly with and degraded apple U-box E3 ligase MdPUB29, a well-established positive regulator of plant innate immunity, through the ubiquitin/26S proteasome pathway. A series of transgenic analyses in apple fruits demonstrated that MdPOB1 affected apple pathogen defense against B. dothidea at least partially, if not completely, via regulating MdPUB29. Additionally, it was found that the apple pathogen defense against B. dothidea was correlated with the H2O2 contents and the relative expression of salicylic acid (SA) synthesis- and SA signaling-related genes, which might be regulated via degradation of MdPUB29 by MdPOB1. Overall, our findings provide new insights into the mechanism of the MdPOB1 modulation of apple ring rot resistance, which occur by directly regulating potential downstream target protein MdPUB29 for proteasomal degradation in apple.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Malus/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Frutas/enzimologia , Frutas/genética , Frutas/imunologia , Frutas/microbiologia , Peróxido de Hidrogênio/metabolismo , Malus/enzimologia , Malus/imunologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Domínios Proteicos , Proteólise , Ácido Salicílico/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
3.
Planta ; 249(4): 1177-1188, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30603792

RESUMO

MAIN CONCLUSION: MdPUB29 is a positive regulator of the defense response to the fungal pathogen Botryosphaeria dothidea possibly by directly regulating the salicylic acid (SA) content as well as SA synthesis-related and signaling-related gene transcription. In plants, ubiquitin E3 ligases containing a U-box domain (PUBs, Plant U-box E3 ubiquitin ligase) have been identified as key regulators of fundamental cellular processes, such as cellular growth, development, and apoptosis, as well as biotic and abiotic stress responses. However, the function of PUBs in apple ring rot remains elusive. Here, we isolated the U-box E3 ligase MdPUB29 from the apple cultivar 'Royal Gala' and characterized its function in plant pathogen defense against Botryosphaeria dothidea. qRT-PCR showed that the expression of MdPUB29 was significantly induced in apple fruits after B. dothidea infection. Overexpression of the MdPUB29 gene in apple calli increased the resistance to B. dothidea infection. In contrast, silencing MdPUB29 in apple calli resulted in reduced resistance. Ectopic expression of MdPUB29 in Arabidopsis also exhibited enhanced resistance to B. dothidea infection compared to that of the wild-type (Col) control. In addition, it was found that the increase of plant pathogen defense was correlated with the increased salicylic acid (SA) content, as well as SA synthesis-related and signaling-related gene transcription in comparison to the wild type. We elucidated the mechanism by which MdPUB29 elevates plant pathogen defense against B. dothidea possibly by regulating the SA pathway.


Assuntos
Ascomicetos , Malus/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligases/genética , Clorofila/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Malus/enzimologia , Malus/imunologia , Malus/microbiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ácido Salicílico/metabolismo , Ubiquitina-Proteína Ligases/fisiologia
4.
Environ Sci Technol ; 53(24): 14538-14547, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31661950

RESUMO

The use of bioaugmented zeolite (bio-zeolite) can be an effective technology for irreversibly removing recalcitrant organic pollutants in aqueous mixtures. Removal of 1,4-dioxane by a bio-zeolite (Pseudonocardia dioxanivorans CB1190-bioaugmented ZSM-5) in the presence of several chlorinated volatile organic compounds (CVOCs) was superior to removal by adsorption using abiotic zeolite. Mixtures containing 1,1-dichloroethene (1,1-DCE) were an exception, which completely inhibited the bio-zeolite system. Specific adsorption characteristics were studied using adsorption isotherms in single-solute and bisolute systems accompanied by Polanyi theory-based Dubinin-Astakhov (DA) modeling. Adsorption behavior was examined using characteristic energy (Ea/H) from modified DA models and molecular dynamics simulations. While the tight-fit of 1,4-dioxane in the hydrophobic channels of ZSM-5 appears to drive 1,4-dioxane adsorption, the greater hydrophobicity of trichloroethene and cis-1,2-dichloroethene cause them have a greater affinity over 1,4-dioxane for adsorption sites on the zeolite. 1,4-Dioxane was desorbed and displaced by CVOCs except 1,1-DCE because of its low Ea/H value, explaining why bio-zeolite only biodegraded 1,4-dioxane in 1,1-DCE-free CVOC mixtures. Understanding the adsorption mechanisms of solutes in complex mixtures is crucial for the implementation of sorption-based treatment technologies for the removal of complex contaminant mixtures from aquatic environments.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Zeolitas , Adsorção , Dioxanos , Simulação de Dinâmica Molecular , Solventes
5.
J Environ Sci (China) ; 80: 267-276, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30952344

RESUMO

Metal ions and fiber are common compounds in the livestock and poultry manure, which will affect the fate of organic compounds in aqueous environment. However, limited research has addressed the effect of coexisting metal ions and fiber on the biodegradation of sulfonamide antibiotics. Accordingly, a compositing study was performed to assess the effect of metal ions (Fe3+ and Cu2+) on the biodegradation of sulfadimethoxine sodium salt (SDM) in the presence of fiber. The enhanced adsorption of SDM onto fiber in the presence of metal ions can be attributed to the π+-π electron donor acceptor (EDA) interaction. The microbial (Phanerochaete chrysosprium) could easily attach onto fiber forming attached microbial, and the degradation rates of SDM of immobilized bacteria in the presence of Fe3+ were 100%, which were significantly higher than those of free bacteria (45%). This study indicates that Fe3+ and fiber could enhance the biodegradation of SDM. Fiber acts as adsorbent, carrier, and substrate which enhanced the removal of SDM.


Assuntos
Biodegradação Ambiental , Sulfonamidas/química , Poluentes Químicos da Água/química , Adsorção , Antibacterianos , Bactérias , Íons/química , Cinética , Esterco , Metais/química , Sulfonamidas/análise , Poluentes Químicos da Água/análise
6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(2): 641-5, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30292186

RESUMO

The molecular recognition of Cucurbit[6]uril (CB[6]) with Oxytetracycline (OTC) was studied by fluorescence spectra and UV spectra. The results showed that the fluorescence intensity and the UV absorbance of OTC were enhanced as host molecules were added, which showed that CB[6] and OTC were interacted. The inclusion of OTC was detected by fluorescence spectra and UV spectra with an apparent 1∶1 interaction, which was also observed through the Benesi-Hildebrand method, OTC can form 1∶1 complex with CB[6] under acid condition and it can not form complex with CB[6] under basic condition. The thermodynamic parameters (stability constants Ks, Gibbs free energy change ΔG, enthalpy change, and entropy change) for the complexation process were determined. The thermodynamic studies indicated that the inclusion reactions between CB[6] and OTC were the hydrophobic interaction and endothermic process.

7.
Environ Sci Pollut Res Int ; 31(13): 19738-19752, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363503

RESUMO

Heterogeneous Fenton oxidation using traditional catalysts with H2O2 for the degradation of 1,4-dioxane (1,4-DX) still presents challenge. In this study, we explored the potential of Fe-ZSM-5 zeolites (Fe-zeolite) with three Si/Al ratios (25, 100, 300) as heterogeneous Fenton catalysts for the removal of 1,4-DX from aqueous solution. Fe2O3 or ZSM-5 alone provided ineffective in degrading 1,4-DX when combined with H2O2. However, the efficient removal of 1,4-DX using H2O2 was observed when Fe2O3 was loaded on ZSM-5. Notably, the Brønsted acid sites of Fe-zeolite played a crucial role during the degradation of 1,4-DX. Fe-zeolites, in combination with H2O2, effectively removed 1,4-DX via a combination of adsorption and oxidation. Initially, Fe-zeolites demonstrated excellent affinity for 1,4-DX, achieving adsorption equilibrium rapidly in about 10 min, followed by effective catalytic oxidative degradation. Among the Fe-ZSM-5 catalysts, Fe-ZSM-5 (25) exhibited the highest catalytic activity and degraded 1,4-DX the fastest. We identified hydroxyl radicals (·OH) and singlet oxygen (1O2) as the primary reactive oxygen species (ROS) responsible for 1,4-DX degradation, with superoxide anions (HO2·/O2·-) mainly converting into 1O2 and ·OH. The degradation primarily occurred at the Fe-zeolite interface, with the degradation rate constants proportional to the amount of Brønsted acid sites on the Fe-zeolite. Fe-zeolites were effective over a wide working pH range, with alkaline pH conditions favoring 1,4-DX degradation. Overall, our study provides valuable insights into the selection of suitable catalysts for effective removal of 1,4-DX using a heterogeneous Fenton technology.


Assuntos
Dioxanos , Ferro , Zeolitas , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Catálise
8.
Hortic Res ; 11(5): uhae081, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766530

RESUMO

BTB and TAZ domain proteins (BTs) function as specialized adaptors facilitating substrate recognition of the CUL3-RING ubiquitin ligase (CRL3) complex that targets proteins for ubiquitination in reaction to diverse pressures. Nonetheless, knowledge of the molecular mechanisms by which the apple scaffold protein MdBT2 responds to external and internal signals is limited. Here we demonstrate that a putative Ca 2+ sensor, calmodulin-like 15 (MdCML15), acts as an upstream regulator of MdBT2 to negatively modulate its functions in plasma membrane H+-ATPase regulation and iron deficiency tolerance. MdCML15 was identified to be substantially linked to MdBT2, and to result in the ubiquitination and degradation of the MdBT2 target protein MdbHLH104. Consequently, MdCML15 repressed the MdbHLH104 target, MdAHA8's expression, reducing levels of a specific membrane H+-ATPase. Finally, the phenotype of transgenic apple plantlets and calli demonstrated that MdCML15 modulates membrane H+-ATPase-produced rhizosphere pH lowering alongside iron homeostasis through an MdCML15-MdBT2-MdbHLH104-MdAHA8 pathway. Our results provide new insights into the relationship between Ca2+ signaling and iron homeostasis.

9.
Antonie Van Leeuwenhoek ; 103(1): 11-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22847260

RESUMO

Nutrients are important for growth and development of plants and microbes, and they are also important factors in plant disease control. The objective of this study was to evaluate the effect of a rock dust used as a fertilizer in maintaining health of soil and tomato plants under greenhouse conditions. Four treatments-including M (commercial organic fertilizer), A (rock dust soil amendment), M + A (commercial organic fertilizer + rock dust soil amendment) and CK (blank control)--were examined for their effect on soil properties, soil enzymatic activity, plant growth and control efficacy against tomato bacterial wilt. Treatments A and M + A were significantly better than other treatments in changing soil pH, increasing it from acidic (pH 5.13) to nearly neutral (pH 6.81 and 6.70, respectively). Enzymatic activities in soil were notably influenced by the different treatments--particularly treatment M + A, which increased the activities of alkaline phosphatase, urease, catalase and sucrase to a greater extent in soil. There was no significant difference (P < 0.05) in the effects of treatments A and M + A on tomato plant height, stem diameter and biomass. The effect of the four treatments on the chlorophyll content and photosynthetic rate (in decreasing order) were M + A, A, M and CK. The replicate greenhouse experiments showed that the control efficacies of treatments M + A, A, and M against bacterial wilt were respectively 89.99, 81.11 and 8.89 % in first experiment and with the efficacies of 84.55, 74.36, and 13.49 % in the replicate; indicating that rock dust played a key role in the plant-soil interaction. The raised soil pH and Ca content were the key factors for the rock dust amendment controlling bacterial wilt under greenhouse conditions.


Assuntos
Fertilizantes , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Biomassa , Biometria , Clorofila/análise , Enzimas/análise , Concentração de Íons de Hidrogênio , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Fotossíntese , Solo/química
10.
Environ Technol ; 34(5-8): 637-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23837313

RESUMO

The removal of polychlorinated biphenyls (PCBs) from soil contaminated with capacitor oil, using microwave (MW)-irradiated manganese dioxide (MnO2), was examined under different conditions. The effects of different types of MnO2 added as oxidant, as well as the initial amount of water, MnO2, and sulphuric acid solution, were also investigated. The removal efficiencies for dichlorobiphenyls, trichlorobiphenyls, tetrachlorobiphenyls, pentachlorobiphenyls, hexachloro-biphenyls, heptachlorobiphenyls, and octachlorobiphenyls were approximately 95.9%, 82.5%, 52.0%, 71.6%, 62.5%, 28.6%, and 16.1%, respectively, by 800 W MW irradiation for 45 min with the assistance of 0.1 g delta-MnO2 and 0.2 mL water in 1.0 g severely PCB-contaminated soil (sigma PCB = 1560.82 mg/kg); meanwhile, the concentrations of Mn2+ ions detected were from 10.6 +/- 1.9 mg/kg at 0 min to 108.2 +/- 7.8 mg/kg after 45 min MW irradiation, indicating that MnO2 acted as not only a MW absorber but also an oxidizer. Removal efficiencies of PCBs from contaminated soil increased with increasing the amounts of water and MnO2 added. The type of MnO2 also affected the removal of PCBs, following an order of delta-MnO2 > alpha-MnO2 > beta-MnO2. The addition of low concentration of sulphuric acid (such as 1.0 mol/L) solution was favourable for the removal of low chloro-substituted PCBs, but the addition of more than 1.0 mol/L sulphuric acid reduced the removal of all PCBs. The pronounced removal of PCBs from contaminated soil in a short treatment time indicates that MW irradiation with the assistance of MnO2 is an efficient and promising technology for the remediation of PCB-contaminated soil.


Assuntos
Eletrônica , Óleos Industriais , Compostos de Manganês/química , Óxidos/química , Bifenilos Policlorados/isolamento & purificação , Poluentes do Solo/química , Poluentes do Solo/isolamento & purificação , Gerenciamento de Resíduos/métodos , Capacitância Elétrica , Compostos de Manganês/efeitos da radiação , Micro-Ondas , Óxidos/efeitos da radiação , Bifenilos Policlorados/química , Bifenilos Policlorados/efeitos da radiação , Poluentes do Solo/efeitos da radiação
11.
J Environ Sci (China) ; 25(12): 2435-42, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24649675

RESUMO

The 360 feed and manure samples were collected from 150 animal farms in Jiangsu Province, China and analyzed for heavy metals. Concentrations of Zn and Cu in animal feeds were 15.9-2041.8 and undetected-392.1 mg/kg respectively, while Hg, As, Pb, Cd, and Cr in all feeds were below 10 mg/kg. Concentrations of Cu, Zn, and Cr in animal manures were 8.4-1726, 39.5-11379, and 1.0-1602 mg/kg respectively, while As, Cd, Hg, and Pb were < 10 mg/kg. The concentration of Cu, Zn, As and Cr in animal feed and manure were positively correlated (p < 0.001), but the Cd, Hg, and Pb were not statistically correlated between the feed and the manure. Concentrations of Cu and Zn were highest in pig feed and manure, followed by poultry and dairy feeds and manures. During 1990-2008, Cu, Zn, As, Cr, Cd contents increased by 771%, 410%, 420%, 220%, and 63% in pig manure, 212%, 95%, 200%, 791%, and -63% in dairy manure, and 181%, 197%, 1500%, 261, and 196% in poultry manure. Most of the increases occurred from 2002 to 2008, which reflects the extensive use of feed additives after 2002. In contrast, Pb and Hg in manures continuously decreased from 1990 to 2008. The results suggest that the heavy metal contents in animal manure have been greatly increased over 18 years and the contribution of manures to soil should be considered.


Assuntos
Ração Animal/análise , Esterco/análise , Metais Pesados/análise , Criação de Animais Domésticos/tendências , Animais , Bovinos , Galinhas , China , Suínos
12.
J Agric Food Chem ; 71(4): 1957-1969, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688926

RESUMO

Bacterial wilt caused by Ralstonia solanacearum (Rs) is one of the most important diseases found in ginger; however, the disease resistance mechanisms dependent on root bacteria and exudates are unclear. In the present study, we analyzed the changes in the composition of rhizobacteria, endobacteria, and root exudates during the pathogenesis of bacterial wilt using high-throughput sequencing and gas chromatography-mass spectrometry (GC-MS). Rs caused bacterial wilt in ginger with an incidence of 50.00% and changed the bacterial community composition in both endosphere and rhizosphere. It significantly reduced bacterial α-diversity but increased the abundance of beneficial and stress-tolerant bacteria, such as Lysobacter, Ramlibacter, Pseudomonas, and Azospirillum. Moreover, the change in rhizobacterial composition induced the changes in endobacterial and root exudate compositions. Moreover, the upregulated exudates inhibited ginger bacterial wilt, with the initial disease index (77.50%) being reduced to 40.00%, suggesting that ginger secretes antibacterial compounds for defense against bacterial pathogens.


Assuntos
Ralstonia solanacearum , Zingiber officinale , Bactérias , Doenças das Plantas/microbiologia
13.
Microbiol Spectr ; 11(6): e0178723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37882576

RESUMO

IMPORTANCE: Assembling a functional microbial consortium and identifying key degraders involved in the degradation of 1,4-dioxane are crucial for the design of synergistic consortia used in enhancing the bioremediation of 1,4-dioxane-contaminated sites. However, due to the vast diversity of microbes, assembling a functional consortium and identifying novel degraders through a simple method remain a challenge. In this study, we reassembled 1,4-dioxane-degrading microbial consortia using a simple and easy-to-operate method by combining dilution-to-extinction and reculture techniques. We combined differential analysis of community structure and metabolic function and confirmed that Shinella species have a stronger 1,4-dioxane degradation ability than Xanthobacter species in the enriched consortium. In addition, a new dioxane-degrading bacterium was isolated, Shinella yambaruensis, which verified our findings. These results demonstrate that DTE and reculture techniques can be used beyond diversity reduction to assemble functional microbial communities, particularly to identify key degraders in contaminant-degrading consortia.


Assuntos
Dioxanos , Microbiota , Dioxanos/metabolismo , Biodegradação Ambiental , Consórcios Microbianos
14.
Nat Commun ; 14(1): 5090, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607924

RESUMO

Soil-borne pathogens pose a major threat to food production worldwide, particularly under global change and with growing populations. Yet, we still know very little about how the soil microbiome regulates the abundance of soil pathogens and their impact on plant health. Here we combined field surveys with experiments to investigate the relationships of soil properties and the structure and function of the soil microbiome with contrasting plant health outcomes. We find that soil acidification largely impacts bacterial communities and reduces the capacity of soils to combat fungal pathogens. In vitro assays with microbiomes from acidified soils further highlight a declined ability to suppress Fusarium, a globally important plant pathogen. Similarly, when we inoculate healthy plants with an acidified soil microbiome, we show a greatly reduced capacity to prevent pathogen invasion. Finally, metagenome sequencing of the soil microbiome and untargeted metabolomics reveals a down regulation of genes associated with the synthesis of sulfur compounds and reduction of key traits related to sulfur metabolism in acidic soils. Our findings suggest that changes in the soil microbiome and disruption of specific microbial processes induced by soil acidification can play a critical role for plant health.


Assuntos
Fusariose , Fusarium , Microbiota , Metagenoma , Concentração de Íons de Hidrogênio
15.
J Environ Manage ; 102: 165-72, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22459013

RESUMO

Norfloxacin (NOR), is an ionizable and polar antimicrobial compound, and it may enter the environment in substantial amounts via the application of manure or sewage as a fertilizer. Sorption of NOR onto humic acid (HA) may affect its environmental fate. In this study, HA extracted from weathered coal was used to investigate the sorption of NOR at different solution chemistry conditions (pH, ionic strength) and temperatures. The sorption of NOR onto HA showed a two-stage sorption process with an equilibration time of 48 h. The sorption kinetic curve fitted well with a pseudo second-order kinetic model. Thermodynamic characteristics demonstrated that the sorption of NOR onto HA was a spontaneous and exothermic process predominated by physical sorption. All sorption isotherms fitted well with the Freundlich and Langmuir models and they were highly nonlinear with values of n between 0.4 and 0.5, suggesting the high heterogeneity of HA. Increasing Ca2+ concentration resulted in a considerable reduction in the K(d) values of NOR, hinting that Ca2+ had probably competed with NOR(+,0) for the cation exchange sites on the surfaces of HA. The sorption reached a maximum at pH 6.0 over the pH range of 2.0-8.0, implying that the primary sorption mechanism was cation exchange interaction between NOR(+,0) species and the negatively charged functional groups of HA. Spectroscopic evidence demonstrated that the piperazinyl moiety of NOR was responsible for sorption onto HA, while the carbonyl group and the aromatic structure of HA participated in adsorbing NOR.


Assuntos
Carvão Mineral , Poluentes Ambientais/química , Substâncias Húmicas , Norfloxacino/química , Adsorção , Recuperação e Remediação Ambiental/métodos , Cinética , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica
16.
Front Microbiol ; 13: 1006878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687620

RESUMO

Introduction: Organic manure, plant growth-promoting microorganisms, and biocontrol agents are widely used to sustainably control soil-borne diseases. However, how and whether organic manure inoculated with biocontrol agents alters soil microbiota and reduces disease severity is poorly understood. Methods: Here, we examined changes to the soil microbial community, soil properties, and incidence of Fusarium wilt disease in response to several fertilization regimes. Specifically, we studied the effects of inorganic chemical fertilization (CF), organic manure fertilization (OF), and Erythrobacter sp. YH-07-inoculated organic manure fertilization (BF) on the incidence of Fusarium wilt in tomato across three seasons. Results: BF-treated soils showed increased microbial abundance, richness, and diversity compared to other treatments, and this trend was stable across seasons. BF-treated soils also exhibited a significantly altered microbial community composition, including increased abundances of Bacillus, Altererythrobacter, Cryptococcus, and Saprospiraceae, and decreased abundances of Chryseolinea and Fusarium. Importantly, BF treatment significantly suppressed the incidence of Fusarium wilt in tomato, likely due to direct suppression by Erythrobacter sp. YH-07 and indirect suppression through changes to the microbial community composition and soil properties. Discussion: Taken together, these results suggest that Erythrobacter sp. YH-07-inoculated organic manure is a stable and sustainable soil amendment for the suppression of Fusarium wilt diseases.

17.
Sci Total Environ ; 774: 145641, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609830

RESUMO

The occurrence of sulfonamides in the environment is a severe global threat to public health due to the increasing prevalence of antibiotic selection pressure that may lead to the development of antibiotic resistance. We report an enhanced biodegradation of sulfadimethoxine (SDM) by Phanerochaete chrysosporium (Pc) with lignocellulosic biomass (Lb) using Fe3O4-ZSM-5 as a catalyst (Pc/Fe3O4-ZSM-5/Lb). SDM was completely degraded within 4 days at pH 7.0 in the Pc/Fe3O4-ZSM-5/Lb system. Transcriptomic, metabolites and free radical analyses were performed to explore the detailed molecular mechanisms of SDM degradation. A total of 246 genes of Pc in the Pc/Fe3O4-ZSM-5/Lb system exhibited significant upregulation compared to that in Pc alone. Upregulated genes encoding cellulases, cytochrome P450, cellobiose quinone oxidoreductase, and cellobiose dehydrogenase were involved in SDM degradation in the Pc/Fe3O4-ZSM-5/Lb system. In addition, genes encoding glutathione S-transferase and cytochrome P450 genes related to oxidative stress and detoxification were all significantly upregulated (P < 0.01). Electron paramagnetic resonance revealed the generation of OH suggesting a free radical pathway could be catalyzed by Fe3O4-ZSM-5 and the enzymes. These findings of catalyst-assisted SDM biodegradation will be valuable for remediation of antibiotics from contaminated wastewater.


Assuntos
Sulfadimetoxina , Transcriptoma , Biodegradação Ambiental , Catálise , Radicais Livres
18.
Plants (Basel) ; 10(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071755

RESUMO

Microbial treatment has recently been attracting attention as a sustainable agricultural strategy addressing the current problems caused by unreasonable agricultural practices. However, the mechanism through which microbial inoculants promote plant growth is not well understood. In this study, two phosphate-solubilizing bacteria (PSB) were screened, and their growth-promoting abilities were explored. At day 7 (D7), the lengths of the root and sprout with three microbial treatments, M16, M44, and the combination of M16 and M44 (Com), were significantly greater than those with the non-microbial control, with mean values of 9.08 and 4.73, 7.15 and 4.83, and 13.98 and 5.68 cm, respectively. At day 14 (D14), M16, M44, and Com significantly increased not only the length of the root and sprout but also the underground and aboveground biomass. Differential metabolites were identified, and various amino acids, amino acid derivatives, and other plant growth-regulating molecules were significantly enhanced by the three microbial treatments. The profiling of key metabolites associated with plant growth in different microbial treatments showed consistent results with their performances in the germination experiment, which revealed the metabolic mechanism of plant growth-promoting processes mediated by screened PSB. This study provides a theoretical basis for the application of PSB in sustainable agriculture.

19.
Pest Manag Sci ; 77(11): 5129-5138, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34251090

RESUMO

BACKGROUND: Understanding the specific inhibitory effects of different Brassica seed meals (BSMs) on soilborne pathogens is important for their application as biocontrol agents for controlling plant disease. In this study, the seed meals of Brassica napus L. (BnSM), Brassica campestris L. (BcSM), and Brassica juncea L. (BjSM), and the combined seed meal of BcSM and BjSM (CSM, 1:1), were selected for investigation. The inhibitory effects of these seed meals on the plant pathogen Ralstonia solanacearum (Smith) and tomato bacterial wilt, were assessed and compared. RESULTS: All the BSMs significantly inhibited the growth of R. solanacearum in vitro. Furthermore, the BSMs could effectively suppress R. solanacearum virulence traits, including motility, exopolysaccharide production, dehydrogenase activity, virulence-related gene expression, and colonization in the soil. Among them, BjSM showed the best inhibiting effects, and CSM displayed synergic toxicity against R. solanacearum. In addition, the predominant antibacterial compounds in BcSM and BjSM were identified as the volatile compounds, 3-butenyl isothiocyanate and allyl isothiocyanate, respectively. Finally, pot experiment verified that the control effects of BjSM and CSM on tomato wilt reached more than 90%. CONCLUSION: This is the first study to report on the ability of different kinds of BSMs to suppress the virulence of R. solanacearum and biocontrol efficiencies against bacterial wilt in tomato plants. Furtherly, the main antibacterial compounds in the BSMs were identified. The results demonstrated that CSM may possess potential for controlling bacterial wilt caused by R. solanacearum. The results provide a fresh perspective for comprehending the mechanism underlying BSM suppression of pathogens and plant disease.


Assuntos
Brassica , Ralstonia solanacearum , Refeições , Sementes , Virulência
20.
Chemosphere ; 266: 129194, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33316476

RESUMO

The overuse of antibiotics and subsequent enrichment of antibiotic resistant microbes in the natural and built environments is a severe threat to global public health. In this study, a Phanerochaete chrysosporium fungal-luffa fiber system was found to efficiently biodegrade two sulfonamides, sulfadimethoxine (SDM) and sulfadizine (SDZ), in cow urine wastewater. Biodegradation pathways were proposed on the basis of key metabolites identified using high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (HPLC-QqTOF-MS). Transcriptomic, metabolomic, and free radical analyses were performed to explore the functional groups and detailed molecular mechanisms of SDM and SDZ degradation. A total of 27 UniGene clusters showed significant differences between luffa fiber and luffa fiber-free systems, which were significantly correlated to cellulose catabolism, carbohydrate metabolism, and oxidoreductase activity. Carbohydrate-active enzymes and oxidoreductases appear to play particularly important roles in SDM and SDZ degradation. Electron paramagnetic resonance (EPR) spectroscopy revealed the generation and evolution of OH and R during the biodegradation of SDM and SDZ, suggesting that beyond enzymatic degradation, SDM and SDZ were also transformed through a free radical pathway. Luffa fiber also acts as a co-substrate to improve the activity of enzymes for the degradation of SDM and SDZ. This research provides a potential strategy for removing SDM and SDZ from agricultural and industrial wastewater using fungal-luffa fiber systems.


Assuntos
Luffa , Phanerochaete , Biodegradação Ambiental , Phanerochaete/genética , Sulfonamidas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA