Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Development ; 138(15): 3287-96, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21750038

RESUMO

Trunk neural crest cells delaminate from the dorsal neural tube as an uninterrupted sheet; however, they convert into segmentally organized streams before migrating through the somitic territory. These neural crest cell streams join the segmental trajectories of pathfinding spinal motor axons, suggesting that interactions between these two cell types might be important for neural crest cell migration. Here, we show that in the zebrafish embryo migration of both neural crest cells and motor axons is temporally synchronized and spatially restricted to the center of the somite, but that motor axons are dispensable for segmental neural crest cell migration. Instead, we find that muscle-specific receptor kinase (MuSK) and its putative ligand Wnt11r are crucial for restricting neural crest cell migration to the center of each somite. Moreover, we find that blocking planar cell polarity (PCP) signaling in somitic muscle cells also results in non-segmental neural crest cell migration. Using an F-actin biosensor we show that in the absence of MuSK neural crest cells fail to retract non-productive leading edges, resulting in non-segmental migration. Finally, we show that MuSK knockout mice display similar neural crest cell migration defects, suggesting a novel, evolutionarily conserved role for MuSK in neural crest migration. We propose that a Wnt11r-MuSK dependent, PCP-like pathway restricts neural crest cells to their segmental path.


Assuntos
Movimento Celular/fisiologia , Crista Neural/citologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Proteínas de Homeodomínio , Camundongos , Camundongos Knockout , Morfogênese/fisiologia , Crista Neural/fisiologia , Receptores Proteína Tirosina Quinases/genética , Proteínas Wnt/genética , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
2.
Dev Biol ; 358(1): 102-12, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21798255

RESUMO

Myogenic regulatory factors of the myod family (MRFs) are transcription factors essential for mammalian skeletal myogenesis. Here we show that a mutation in the zebrafish myod gene delays and reduces early somitic and pectoral fin myogenesis, reduces miR-206 expression, and leads to a persistent reduction in somite size until at least the independent feeding stage. A mutation in myog, encoding a second MRF, has little obvious phenotype at early stages, but exacerbates the loss of somitic muscle caused by lack of Myod. Mutation of both myod and myf5 ablates all skeletal muscle. Haploinsufficiency of myod leads to reduced embryonic somite muscle bulk. Lack of Myod causes a severe reduction in cranial musculature, ablating most muscles including the protractor pectoralis, a putative cucullaris homologue. This phenotype is accompanied by a severe dysmorphology of the cartilaginous skeleton and failure of maturation of several cranial bones, including the opercle. As myod expression is restricted to myogenic cells, the data show that myogenesis is essential for proper skeletogenesis in the head.


Assuntos
Osso e Ossos/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Haploinsuficiência/genética , Desenvolvimento Muscular/fisiologia , Proteína MyoD/genética , Crânio/embriologia , Peixe-Zebra/embriologia , Animais , Cartilagem/embriologia , Haploinsuficiência/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Larva/fisiologia , Músculo Esquelético/embriologia , Mutação/genética , Proteína MyoD/metabolismo , Extremidade Superior/embriologia , Peixe-Zebra/genética
3.
Brief Funct Genomic Proteomic ; 7(6): 454-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19028802

RESUMO

TILLING, for Targeting Induced Local Lesions in Genomes, is a reverse genetics strategy that identifies mutations in specific genes of interest in chemically mutagenized populations. First described in 2000 for mutation detection in Arabidopsis, TILLING is now used in a wide range of plants including soybean, rice, barley and maize as well as for animal model systems, including Arabidopsis, Drosophila, Caenorhabditis elegans, rat, medaka and zebrafish and for the discovery of naturally occurring polymorphisms in humans. This review summarizes current TILLING methodologies as they have been applied to the zebrafish, ongoing TILLING projects and resources in the zebrafish community, and the future of zebrafish TILLING.


Assuntos
Peixe-Zebra/genética , Animais , Pareamento Incorreto de Bases , Etilnitrosoureia/administração & dosagem , Modelos Biológicos , Mutagênese , Mutagênicos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA