Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
J Trauma Acute Care Surg ; 96(2): 209-215, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37872669

RESUMO

BACKGROUND: The optimal time to initiate venous thromboembolism (VTE) chemoprophylaxis (VTEp) after blunt solid organ injury remains controversial, as VTE mitigation must be balanced against bleeding promulgation. Evidence from primarily small, retrospective, single-center work suggests that VTEp ≤48 hours is safe and effective. This study was undertaken to validate this clinical practice. METHODS: Blunt trauma patients presenting to 19 participating trauma centers in North America were screened over a 1-year study period beginning between August 1 and October 1, 2021. Inclusions were age older than 15 years; ≥1 liver, spleen, or kidney injury; and initial nonoperative management. Exclusions were transfers, emergency department death, pregnancy, and concomitant bleeding disorder/anticoagulation/antiplatelet medication. A priori power calculation stipulated the need for 1,158 patients. Time of VTEp initiation defined study groups: Early (≤48 hours of admission) versus Late (>48 hours). Bivariate and multivariable analyses compared outcomes. RESULTS: In total, 1,173 patients satisfied the study criteria with 571 liver (49%), 557 spleen (47%), and 277 kidney injuries (24%). The median patient age was 34 years (interquartile range, 25-49 years), and 67% (n = 780) were male. The median Injury Severity Score was 22 (interquartile range, 14-29) with Abbreviated Injury Scale Abdomen score of 3 (interquartile range, 2-3), and the median American Association for the Surgery of Trauma grade of solid organ injury was 2 (interquartile range, 2-3). Early VTEp patients (n = 838 [74%]) had significantly lower rates of VTE (n = 28 [3%] vs. n = 21 [7%], p = 0.008), comparable rates of nonoperative management failure (n = 21 [3%] vs. n = 12 [4%], p = 0.228), and lower rates of post-VTEp blood transfusion (n = 145 [17%] vs. n = 71 [23%], p = 0.024) when compared with Late VTEp patients (n = 301 [26%]). Late VTEp was independently associated with VTE (odd ratio, 2.251; p = 0.046). CONCLUSION: Early initiation of VTEp was associated with significantly reduced rates of VTE with no increase in bleeding complications. Venous thromboembolism chemoprophylaxis initiation ≤48 hours is therefore safe and effective and should be the standard of care for patients with blunt solid organ injury. LEVEL OF EVIDENCE: Therapeutic and Care Management; Level III.


Assuntos
Tromboembolia Venosa , Ferimentos não Penetrantes , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticoagulantes/uso terapêutico , Hemorragia/tratamento farmacológico , Estudos Prospectivos , Estudos Retrospectivos , Estados Unidos , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/prevenção & controle , Ferimentos não Penetrantes/complicações , Ferimentos não Penetrantes/cirurgia , Ferimentos não Penetrantes/tratamento farmacológico
2.
Trauma Surg Acute Care Open ; 9(1): e001280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737811

RESUMO

Background: Tiered trauma team activation (TTA) allows systems to optimally allocate resources to an injured patient. Target undertriage and overtriage rates of <5% and <35% are difficult for centers to achieve, and performance variability exists. The objective of this study was to optimize and externally validate a previously developed hospital trauma triage prediction model to predict the need for emergent intervention in 6 hours (NEI-6), an indicator of need for a full TTA. Methods: The model was previously developed and internally validated using data from 31 US trauma centers. Data were collected prospectively at five sites using a mobile application which hosted the NEI-6 model. A weighted multiple logistic regression model was used to retrain and optimize the model using the original data set and a portion of data from one of the prospective sites. The remaining data from the five sites were designated for external validation. The area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) were used to assess the validation cohort. Subanalyses were performed for age, race, and mechanism of injury. Results: 14 421 patients were included in the training data set and 2476 patients in the external validation data set across five sites. On validation, the model had an overall undertriage rate of 9.1% and overtriage rate of 53.7%, with an AUROC of 0.80 and an AUPRC of 0.63. Blunt injury had an undertriage rate of 8.8%, whereas penetrating injury had 31.2%. For those aged ≥65, the undertriage rate was 8.4%, and for Black or African American patients the undertriage rate was 7.7%. Conclusion: The optimized and externally validated NEI-6 model approaches the recommended undertriage and overtriage rates while significantly reducing variability of TTA across centers for blunt trauma patients. The model performs well for populations that traditionally have high rates of undertriage. Level of evidence: 2.

3.
Injury ; : 111523, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38614835

RESUMO

BACKGROUND: In patients with severe traumatic brain injury (TBI), clinicians must balance preventing venous thromboembolism (VTE) with the risk of intracranial hemorrhagic expansion (ICHE). We hypothesized that low molecular weight heparin (LMWH) would not increase risk of ICHE or VTE as compared to unfractionated heparin (UH) in patients with severe TBI. METHODS: Patients ≥ 18 years of age with isolated severe TBI (AIS ≥ 3), admitted to 24 level I and II trauma centers between January 1, 2014 to December 31, 2020 and who received subcutaneous UH and LMWH injections for chemical venous thromboembolism prophylaxis (VTEP) were included. Primary outcomes were VTE and ICHE after VTEP initiation. Secondary outcomes were mortality and neurosurgical interventions. Entropy balancing (EBAL) weighted competing risk or logistic regression models were estimated for all outcomes with chemical VTEP agent as the predictor of interest. RESULTS: 984 patients received chemical VTEP, 482 UH and 502 LMWH. Patients on LMWH more often had pre-existing conditions such as liver disease (UH vs LMWH 1.7 % vs. 4.4 %, p = 0.01), and coagulopathy (UH vs LMWH 0.4 % vs. 4.2 %, p < 0.001). There were no differences in VTE or ICHE after VTEP initiation. There were no differences in neurosurgical interventions performed. There were a total of 29 VTE events (3 %) in the cohort who received VTEP. A Cox proportional hazards model with a random effect for facility demonstrated no statistically significant differences in time to VTE across the two agents (p = 0.44). The LMWH group had a 43 % lower risk of overall ICHE compared to the UH group (HR = 0.57: 95 % CI = 0.32-1.03, p = 0.062), however was not statistically significant. CONCLUSION: In this multi-center analysis, patients who received LMWH had a decreased risk of ICHE, with no differences in VTE, ICHE after VTEP initiation and neurosurgical interventions compared to those who received UH. There were no safety concerns when using LMWH compared to UH. LEVEL OF EVIDENCE: Level III, Therapeutic Care Management.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38797882

RESUMO

BACKGROUND: Despite the high incidence of blunt trauma in older adults, there is a lack of evidence-based guidance for computed tomography (CT) imaging in this population. We aimed to identify an algorithm to guide use of a Pan-Scan (Head/C-spine/Torso) or a Selective Scan (Head/C-spine ± Torso). We hypothesized that a patient's initial history and exam could be used to guide imaging. METHODS: We prospectively studied blunt trauma patients aged 65+ at 18 Level I/II trauma centers. Patients presenting >24 h after injury or who died upon arrival were excluded. We collected history and physical elements and final injury diagnoses. Injury diagnoses were categorized into CT body regions of Head/C-spine or Torso (chest, abdomen/pelvis, and T/L spine). Using machine learning and regression modeling as well as a priori clinical algorithms based, we tested various decision rules against our dataset. Our priority was to identify a simple rule which could be applied at the bedside, maximizing sensitivity (Sens) and negative predictive value (NPV) to minimize missed injuries. RESULTS: We enrolled 5,498 patients with 3,082 injuries. Nearly half (47.1%, n = 2,587) had an injury within the defined CT body regions. No rule to guide a Pan-Scan could be identified with suitable Sens/NPV for clinical use. A clinical algorithm to identify patients for Pan-Scan, using a combination of physical exam findings and specific high-risk criteria, was identified and had a Sens of 0.94 and NPV of 0.86 This rule would have identified injuries in all but 90 patients (1.6%) and would theoretically spare 11.9% (655) of blunt trauma patients a torso CT. CONCLUSIONS: Our findings advocate for Head/Cspine CT in all geriatric patients with the addition of torso CT in the setting of positive clinical findings and high-risk criteria. Prospective validation of this rule could lead to streamlined diagnostic care of this growing trauma population. LEVEL OF EVIDENCE: Level 2, Diagnostic Tests or Criteria.

5.
J Trauma Acute Care Surg ; 95(2S Suppl 1): S36-S40, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221638

RESUMO

BACKGROUND: Extending the time to definitive hemorrhage control in noncompressible torso hemorrhage (NCTH) is of particular importance in the battlefield where transfer times are prolonged and NCTH remains the leading cause of death. While resuscitative endovascular balloon occlusion of the aorta is widely practiced as an initial adjunct for the management of NCTH, concerns for ischemic complications after 30 minutes of compete aortic occlusion deters many from zone 1 deployment. We hypothesize that extended zone 1 occlusion times will be enabled by novel purpose-built devices that allow for titratable partial aortic occlusion. METHODS: This is a cross-sectional analysis describing pREBOA-PRO zone 1 deployment characteristics at seven level 1 trauma centers in the United States and Canada (March 30, 2021, and June 30, 2022). To compare patterns of zone 1 aortic occlusion, the AORTA registry was used. Data were limited to adult patients who underwent successful occlusion in zone 1 (2013-2022). RESULTS: One hundred twenty-two patients pREBOA-PRO patients were included. Most catheters were deployed in zone 1 (n = 89 [73%]) with a median zone 1 total occlusion time of 40 minutes (interquartile range, 25-74). A sequence of complete followed by partial occlusion was used in 42% (n = 37) of zone 1 occlusion patients; a median of 76% (interquartile range, 60-87%) of total occlusion time was partial occlusion in this group. As was seen in the prospectively collected data, longer median total occlusion times were observed in the titratable occlusion group in AORTA compared with the complete occlusion group. CONCLUSION: Longer zone 1 aortic occlusion times seen with titratable aortic occlusion catheters appear to be driven by the feasibility of controlled partial occlusion. The ability to extend safe aortic occlusion times may have significant impact to combat casualty care where exsanguination from NCTH is the leading source of potentially preventable deaths. LEVEL OF EVIDENCE: Therapeutic/Care Management; Level IV.


Assuntos
Oclusão com Balão , Procedimentos Endovasculares , Choque Hemorrágico , Adulto , Humanos , Estudos Transversais , Aorta/cirurgia , Aorta/lesões , Hemorragia/terapia , Tronco , Exsanguinação , Ressuscitação , Choque Hemorrágico/terapia
6.
J Trauma Acute Care Surg ; 95(1): 94-104, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37017458

RESUMO

BACKGROUND: Patients with traumatic brain injury (TBI) are at high risk of venous thromboembolism events (VTE). We hypothesized that early chemical VTE prophylaxis initiation (≤24 hours of a stable head CT) in severe TBI would reduce VTE without increasing risk of intracranial hemorrhage expansion (ICHE). METHODS: A retrospective review of adult patients 18 years or older with isolated severe TBI (Abbreviated Injury Scale score, ≥ 3) who were admitted to 24 Level I and Level II trauma centers from January 1, 2014 to December 31 2020 was conducted. Patients were divided into those who did not receive any VTE prophylaxis (NO VTEP), who received VTE prophylaxis ≤24 hours after stable head CT (VTEP ≤24) and who received VTE prophylaxis >24 hours after stable head CT (VTEP>24). Primary outcomes were VTE and ICHE. Covariate balancing propensity score weighting was utilized to balance demographic and clinical characteristics across three groups. Weighted univariate logistic regression models were estimated for VTE and ICHE with patient group as predictor of interest. RESULTS: Of 3,936 patients, 1,784 met inclusion criteria. Incidences of VTE was significantly higher in the VTEP>24 group, with higher incidences of DVT in the group. Higher incidences of ICHE were observed in the VTEP≤24 and VTEP>24 groups. After propensity score weighting, there was a higher risk of VTE in patients in VTEP >24 compared with those in VTEP≤24 (odds ratio, 1.51; 95% confidence interval, 0.69-3.30; p = 0.307), however was not significant. Although, the No VTEP group had decreased odds of having ICHE compared with VTEP≤24 (odds ratio, 0.75; 95% confidence interval, 0.55-1.02, p = 0.070), the result was not statistically significant. CONCLUSION: In this large multi-center analysis, there were no significant differences in VTE based on timing of initiation of VTE prophylaxis. Patients who never received VTE prophylaxis had decreased odds of ICHE. Further evaluation of VTE prophylaxis in larger randomized studies will be necessary for definitive conclusions. LEVEL OF EVIDENCE: Therapeutic Care Management; Level III.


Assuntos
Lesões Encefálicas Traumáticas , Tromboembolia Venosa , Adulto , Humanos , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/prevenção & controle , Pontuação de Propensão , Resultado do Tratamento , Anticoagulantes/uso terapêutico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Hemorragias Intracranianas/induzido quimicamente , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA