Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Anal Chem ; 96(12): 5046-5055, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488055

RESUMO

Bimodal-type multiplexed immunoassays with complementary mode-based correlation analysis are gaining increasing attention for enhancing the practicability of the lateral flow immunoassay (LFIA). Nonetheless, the restriction in visually indistinguishable multitargets induced by a single fluorescent color and difficulty in single acceptor ineffectual fluorescence quenching due to the various spectra of multiple different donors impede the further execution of colorimetric-fluorescence bimodal-type multiplexed LFIAs. Herein, the precise spectral overlap-based donor-acceptor pair construction strategy is proposed by regulating the size of the nanocore, coating it with an appropriate nanoshell, and selecting a suitable fluorescence donor with distinct colors. By in situ coating Prussian blue nanoparticles (PBNPs) on AuNPs with a tunable size and absorption spectrum, the resultant APNPs demonstrate efficient fluorescence quenching ability, higher colloidal stability, remarkable colorimetric intensity, and an enhanced antibody coupling efficiency, all of which facilitate highly sensitive bimodal-type LFIA analysis. Following integration with competitive-type immunoreaction, this precise spectral overlap-supported spatial separation traffic light-typed colorimetric-fluorescence dual-response assay (coined as the STCFD assay) with the limits of detection of 0.013 and 0.152 ng mL-1 for ractopamine and clenbuterol, respectively, was proposed. This work illustrates the superiority of the rational design of a precise spectral overlap-based donor-acceptor pair, hinting at the enormous potential of the STCFD assay in the point-of-care field.


Assuntos
Clembuterol , Nanopartículas Metálicas , Ouro , Imunoensaio , Fenômenos Químicos , Limite de Detecção
2.
J Clin Microbiol ; 62(2): e0012023, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38284761

RESUMO

Rapid phenotypic detection assays, including Carba NP and its variants, are widely applied for clinical diagnosis of carbapenemase-producing Enterobacterales (CPE). However, these tests are based on the acidification of the pH indicator during carbapenem hydrolysis, which limits test sensitivity and speed, especially for the detection of CPE producing low-activity carbapenem (e.g., OXA-48 variants). Herein, we developed a novel rapid and sensitive CPE detection method (Carba PBP) that could measure substrate (meropenem) consumption based on penicillin-binding protein (PBP). Meropenem-specific PBP was used to develop a competitive lateral flow assay (LFA) for meropenem identification. For the detection of carbapenemase activity, meropenem concentration was optimized using a checkerboard assay. The performance of Carba PBP was evaluated and compared with that of Carba NP using a panel of 94 clinical strains characterized by whole-genome sequencing and carbapenem susceptibility test. The limit of detection of PBP-based LFA for meropenem identification was 7 ng mL-1. Using 10 ng mL-1 meropenem as the substrate, Carba PBP and Carba NP could detect 10 ng mL-1 carbapenemase within 25 min and 1,280 ng mL-1 CPE in 2 h, respectively. The sensitivity and specificity were 100% (75/75) and 100% (19/19) for Carba PBP and 85.3% (64/75) and 100% (19/19) for Carba NP, respectively. When compared with Carba NP, Carba PBP showed superior performance in detecting all the tested CPE strains (including OXA-48-like variants) within 25 min and presented two orders of magnitude higher analytical sensitivity, demonstrating potential for clinical diagnosis of CPE. IMPORTANCE This study successfully achieved the goal of carbapenemase activity detection with both high sensitivity and convenience, offering a convenient lateral flow assay for clinical diagnosis of carbapenemase-producing Enterobacterales.


Assuntos
Proteínas de Bactérias , beta-Lactamases , Humanos , Proteínas de Ligação às Penicilinas/genética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Sensibilidade e Especificidade
3.
Compr Rev Food Sci Food Saf ; 23(1): e13264, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284582

RESUMO

Staphylococcal enterotoxins (SEs), the major virulence factors of Staphylococcus aureus, cause a wide range of food poisoning and seriously threaten human health by infiltrating the food supply chain at different phases of manufacture, processes, distribution, and market. The significant prevalence of Staphylococcus aureus calls for efficient, fast, and sensitive methods for the early detection of SEs. Here, we provide a comprehensive review of the hazards of SEs in contaminated food, the characteristic and worldwide regulations of SEs, and various detection methods for SEs with extensive comparison and discussion of benefits and drawbacks, mainly including biological detection, genetic detection, and mass spectrometry detection and biosensors. We highlight the biosensors for the screening purpose of SEs, which are classified according to different recognition elements such as antibodies, aptamers, molecularly imprinted polymers, T-cell receptors, and transducers such as optical, electrochemical, and piezoelectric biosensors. We analyzed challenges of biosensors for the monitoring of SEs and conclude the trends for the development of novel biosensors should pay attention to improve samples pretreatment efficiency, employ innovative nanomaterials, and develop portable instruments. This review provides new information and insightful commentary, important to the development and innovation of further detection methods for SEs in food samples.


Assuntos
Doenças Transmitidas por Alimentos , Intoxicação Alimentar Estafilocócica , Humanos , Staphylococcus aureus/genética , Intoxicação Alimentar Estafilocócica/diagnóstico , Intoxicação Alimentar Estafilocócica/epidemiologia , Enterotoxinas/análise , Espectrometria de Massas
4.
Anal Chem ; 95(12): 5223-5231, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36920169

RESUMO

Aggregation-induced emission luminogens (AIEgens) are promising candidates for bacterial imaging and detection because they can "Light-Up" pathogenic bacteria without complicated labeling or washing steps. However, there have been few in-depth analyses of the intrinsic mechanism underlying their utility as fluorescence probes for targeting bacteria. Therefore, using large-scale molecular dynamics simulations, we investigated the mechanism of their bacterial "Light-Up" behavior with N,N-diphenyl-4-(7-(pyridin-4-yl)benzo[c][1,2,5]thiadiazol-4-yl) aniline functionalized with 1-bromoethane (TBP-1). We propose that the triphenylamine motif of TBP-1, rather than the positively charged pyridine group, first contacts the cell membrane. After TBP-1 completely inserts into the cell membrane, the hydrophobic triphenylamine motif localizes in the hydrophobic core of the cell membrane, restricting the molecular variation of TBP-1, which induces the fluorescent "turn-on" and bacterial "Light-Up." On this basis, we established a heterogeneous lateral flow immunoassay (LFIA) for the detection of foodborne pathogens. The LFIA system showed improved sensitivity with a limit of detection as low as 103 CFU mL-1 and strong specificity. Our protocol opened an effective shortcut to the design of more efficient AIEgens and novel AIEgens-based immunoassays.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes/química , Imunoensaio , Diagnóstico por Imagem , Bactérias
5.
Small ; 19(43): e2301598, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37381671

RESUMO

Engineered collaborative size regulation and shape engineering of multi-functional nanomaterials (NPs) offer extraordinary opportunities for improving the analysis performance. It is anticipated to address the difficulty in distinguishing color changes caused by subtle variations in target concentrations, thereby facilitating the highly sensitive analysis of lateral flow immunoassays (LFIAs). Herein, tremella-like gold-manganese oxide (Au-MnOx ) nanoparticles with precise MnCl2 regulation are synthesized as immuno signal tracers via a facile one-step redox reaction in alkaline condition at ambient temperature. Avail of the tunable elemental composition and anisotropy in morphology, black-colored tremella-like Au-MnOx exhibits superb colorimetric signal brightness, enhanced antibody coupling efficiency, marvelous photothermal performance, and unrestricted immunological recognition affinity, all of which facilitate highly sensitive multi-signal transduction patterns. In conjunction with the handheld thermal reader device, a bimodal-type LFIA that combines size-regulation- and shape-engineering-mediated colorimetric-photothermal dual-response assay (coined as the SSCPD assay) with a limit of detection of 0.012 ng mL-1 for ractopamine (RAC) monitoring is achieved by integrating Au-MnOx with the competitive-type immunoreaction. This work illustrates the effectiveness of this strategy for establishing high-performance sensing, and the SSCPD assay may be extended to a wide spectrum of future point-of-care (POC) diagnostic applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro , Imunoensaio , Anticorpos , Colorimetria , Limite de Detecção
6.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047757

RESUMO

Recently, urinary tract infection (UTI) triggered by bacteria carrying pan-drug-resistant genes, including carbapenem resistance gene blaNDM and blaKPC, colistin resistance gene mcr-1, and tet(X) for tigecycline resistance, have been reported, posing a serious challenge to the treatment of clinical UTI. Therefore, point-of-care (POC) detection of these genes in UTI samples without the need for pre-culturing is urgently needed. Based on PEG 200-enhanced recombinase polymerase amplification (RPA) and a refined Chelex-100 lysis method with HRP-catalyzed lateral flow immunoassay (LFIA), we developed an MCL-PRPA-HLFIA cascade assay system for detecting these genes in UTI samples. The refined Chelex-100 lysis method extracts target DNA from UTI samples in 20 min without high-speed centrifugation or pre-incubation of urine samples. Following optimization, the cascade detection system achieved an LOD of 102 CFU/mL with satisfactory specificity and could detect these genes in both simulated and actual UTI samples. It takes less than an hour to complete the process without the use of high-speed centrifuges or other specialized equipment, such as PCR amplifiers. The MCL-PRPA-HLFIA cascade assay system provides new ideas for the construction of rapid detection methods for pan-drug-resistant genes in clinical UTI samples and provides the necessary medication guidance for UTI treatment.


Assuntos
Infecções Urinárias , Humanos , Infecções Urinárias/diagnóstico , Infecções Urinárias/microbiologia , Colistina , Testes Imediatos , Reação em Cadeia da Polimerase/métodos
7.
Anal Chem ; 94(51): 17843-17852, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36519948

RESUMO

The pursuit of the limit between dimensionalities is a scientific goal with high applicability. Sandwich immunoassay, usually based on two antibodies binding two epitopes, is one of the most popular mainstay tools in both academic and industrial fields. Herein, we determined and evaluated the minimum distance of two epitopes in sandwich immunoassays for small molecules. Briefly, nine model analytes comprising two hapten epitopes, that is, melamine (MEL) and p-nitroaniline (NIA), were designed by increasing the linear chain linkers brick by brick. Two groups of monoclonal antibodies (mAbs) were produced with different recognition properties toward MEL and NIA using 12 new haptens with different spacer arms. The results indicated that two epitopes of the analyte with a distance of only 2.4 Å could be simultaneously bound by two mAbs, which is the known limit of epitope distance in sandwich immunoassays thus far. We further found that an epitope distance of below 8.8 Å for the analyte generally induces noticeable steric hindrance of antibodies, preventing a sandwich immunoassay with high probability. These observations were investigated and evaluated by molecular docking, molecular dynamics, and surface plasmon resonance and using model and real analytes. Altogether, we determined the minimum distance of two epitopes and explored the molecular mechanism of the antibody-analyte-antibody ternary complex in sandwich immunoassays, providing a theoretical basis for hapten design, antibody discovery and development, and sandwich immunoassay establishment for small molecules.


Assuntos
Anticorpos Monoclonais , Haptenos , Epitopos , Simulação de Acoplamento Molecular , Imunoensaio/métodos , Anticorpos Monoclonais/química
8.
Anal Chem ; 94(3): 1585-1593, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35021619

RESUMO

Multiplex lateral flow immunoassay (mLFIA) has attracted great attention due to the increasing need for rapid detection of multiple analytes. However, it has a number of disadvantages with regard to accuracy and interference because of difficulties in simplifying the process of preparing nanomaterial-based probes. In this work, inspired by protein self-assembly, for the first time, a facile natural antibody network (NAN)-based mLFIA for multiple chloramphenicol (CAP) and streptomycin (STR) determination was designed. The NAN structure was constructed by introducing a second antibody (Ab2) as a scaffold to noncovalently combine with various monoclonal antibodies (mAbs), thus permitting each mAb to act as an independent functional unit to maintain bioactivity. Furthermore, the NAN was colored by simple one-step staining using coomassie brilliant blue R-250 (CBBR) to form a chromogenic probe, eliminating the need for complex nanomaterials to improve reproducibility and precision. Under optimal conditions, a satisfactory detection performance (the visual limit of detection (v-LOD) of 3 ng mL-1 for CAP and 20 ng mL-1 for STR) was obtained for whole milk analysis, which met the basic requirement of detection and had good specificity, reproducibility (relative standard deviation (RSD) < 15%), and robustness. In addition, the precision of the detection results was improved usefully since the test procedure was simplified. Overall, the developed system enables fast, simple, and reliable point-of-care assays of multiple analytes.


Assuntos
Leite , Testes Imediatos , Animais , Imunoensaio/métodos , Limite de Detecção , Leite/química , Reprodutibilidade dos Testes
9.
Small ; 18(45): e2204859, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36161770

RESUMO

Stimulated surface-enhanced Raman scattering (SERS) in combination with engineered nano-tracer offers extraordinary potential in lateral flow immunoassays (LFIAs). Nonetheless, the investigation execution of SERS-LFIA is often compromised by the intricacy and overlap of the Raman fingerprint spectrum as well as the affinity-interference of nano-tracer to antibody. To circumvent these critical issues, an engineered core-shell multifunctional nano-tracer (named APNPs) with precise control of the size of nano-core (AuNPs) and coating of the nano-shell (Prussian blue nanomaterials) is prepared for SERS-LFIA via a modified enlarging particle size and coating modification strategy. Importantly, this nano-tracer exhibits enhanced coupling efficiency, highly retained affinity, reinforced colloid stability, and unique SERS signal (2156 cm-1 ) in the silent region (1800-2800 cm-1 ) with high signal-to-background ratio simultaneously, all of which are beneficial to the enhancement of the analysis performance. With a proof-of-concept demonstration for detection of ractopamine (RAC), a dual-pattern LFIA that synergizes both the enlarged particle size and coating modification supported colorimetric/biological silence Raman dual-response (coined as the ECCRD assay) is demonstrated by integrating APNPs with the competitive-type immunoreaction. This research may contribute to the rational design of multifunctional nano-tracer, and the ECCRD assay can be expanded for a wide spectrum of applications in environmental monitoring and biomedical diagnosis.


Assuntos
Ouro , Nanopartículas Metálicas , Prata , Análise Espectral Raman , Imunoensaio
10.
Anal Bioanal Chem ; 413(20): 4979-4987, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34240228

RESUMO

Phallotoxins, toxic cyclopeptides found in wild poisonous mushrooms, are predominant causes of fatal food poisoning. For the early and rapid diagnosis mushroom toxin poisoning, a highly sensitive and robust monoclonal antibody (mAb) against phallotoxins was produced for the first time. The half-maximum inhibition concentration (IC50) values of the mAb-based indirect competitive ELISAs for phallacidin (PCD) and phalloidin (PHD) detection were 0.31 ng mL-1 and 0.35 ng mL-1, respectively. In response to the demand for rapid screening of the type of poisoning and accurate determination of the severity of poisoning, colloidal gold nanoparticle (GNP) and time-resolved fluorescent nanosphere (TRFN) based lateral flow assays (LFA) were developed. The GNP-LFA has a visual cut-off value of 3.0 ng mL-1 for phallotoxins in human urine sample. The TRFN-LFA provides a quantitative readout signal with detection limit of 0.1 ng mL-1 in human urine sample. In this study, urine samples without pretreatment were used directly for the LFA strip tests, and both two LFAs were able to accomplish analysis within 10 min. The results demonstrated that LFAs based on the newly produced, highly sensitive, and robust mAb were able to be used for both rapid qualitative screening of the type of poisoning and accurate quantitative determination of the severity of poisoning after accidental ingestion by patients of toxic mushrooms.


Assuntos
Amanitinas/química , Amanitinas/urina , Anticorpos Monoclonais/química , Fitas Reagentes , Animais , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Camundongos , Estrutura Molecular , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/urina , Sensibilidade e Especificidade
11.
Mikrochim Acta ; 188(2): 59, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33507410

RESUMO

A homogeneous fluorescence quenching immunoassay is described for simultaneous separation and detection of aflatoxin M1 (AFM1) in milk. The novel assay relies on monoclonal antibody (mAb) functionalized Fe3O4 decorated reduced-graphene oxide (rGO-Fe3O4-mAb) as both capture probe and energy acceptor, combined with tetramethylrhodamine cadaverine-labeled aflatoxin B1 (AFB1-TRCA) as the energy donor. In the assay, AFB1-TRCA binds to rGO-Fe3O4-mAb in the absence of AFM1, quenching the fluorescence of TRCA by resonance energy transfer. Significantly, the immunoassay integrates sample preparation and detection into a single step, by using magnetic graphene composites to avoid washing and centrifugation steps, and the assay can be completed within 10 min. Under optimized conditions, the visual and quantitative detection limits of the assay for AFM1 were 50 and 3.8 ng L-1, respectively, which were significantly lower than those obtained by fluorescence polarization immunoassay using the same immunoreagents. Owing to its operation and highly sensitivity, the proposed assay provides a powerful tool for the detection of AFM1.


Assuntos
Aflatoxina M1/análise , Grafite/química , Imunoensaio/métodos , Nanopartículas de Magnetita/química , Aflatoxina B1/química , Aflatoxina B1/imunologia , Aflatoxina M1/imunologia , Animais , Anticorpos Imobilizados/imunologia , Anticorpos Monoclonais/imunologia , Cadaverina/química , Corantes Fluorescentes/química , Contaminação de Alimentos/análise , Limite de Detecção , Leite/química , Reprodutibilidade dos Testes , Rodaminas/química , Espectrometria de Fluorescência
12.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577037

RESUMO

Theoretically, sandwich immunoassay is more sensitive and has a wider working range than that of competitive format. However, it has been thought that small molecules cannot be detected by the sandwich format due to their limited size. In the present study, we proposed a novel strategy for achieving sandwich immunoassay of ß-lactams with low molecular weights. Firstly, five ß-lactam antibiotics were selected to bind with penicillin binding protein (PBP)2x* to form complexes. Then, monoclonal and polyclonal antibodies against PBP2x*-ß-lactams complexes were produced by animal immunization. Subsequently, the optimal pairing antibodies were utilized to establish sandwich immunoassay for detection of 18 PBP2x*-ß-lactam complexes. Among them, ceftriaxone could be detected at as low as 1.65 ng/mL with working range of 1-1000 ng/mL in milk. To reveal the detection mechanism, computational chemistry and molecular recognition study were carried out. The results showed that ß-lactams with a large size and complex structures maybe conducive to induce conformational changes of PBP2x*, and then exhibit greater possibility of being detected by sandwich immunoassay after combination with PBP2x*. This study provides insights for subsequent investigations of anti-metatype antibody screening and sandwich immunoassay establishment for small-molecule detection.


Assuntos
Proteínas de Ligação às Penicilinas , Streptococcus pneumoniae , beta-Lactamas , Antibacterianos , Testes de Sensibilidade Microbiana
13.
Inorg Chem ; 58(17): 11382-11388, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31402664

RESUMO

Enzyme-like metal-organic frameworks (MOFs) are currently one type of starring material in the fields of artificial enzymes and analytical sensing. However, there has been little progress in making use of the MOF structures based on the catalytically active metal center with multiple valences. Herein, we report a mixed-valence Ce-MOF (Ce-BPyDC) that can exhibit both oxidase-like and peroxidase-like activities. Ce-BPyDC was synthesized by a facile hydrothermal method, which preserves the rare coexistence of Ce(III) and Ce(IV) in the MOF structure. The enzymatic studies demonstrated the enzyme-like activities of Ce-BPyDC follow the Michaelis-Menten kinetics and are strongly dependent on temperature, pH, and reaction time. Ce-BPyDC was also revealed to exert high catalytic activity that could transcend horseradish peroxidase and other MOF nanozymes, due to the redox-active Ce(III)/Ce(IV) cycles inside. Furthermore, the simple synthesis, high nanozyme activity, and great stability of Ce-BPyDC motivated us to establish a colorimetric biosensing platform using 3,3',5,5'-tetramethylbenzidine as a color reagent. Adopting this strategy, we established a visual, sensitive, and selective colorimetric method for ascorbic acid (AA) detection, for which the linear interval and limit of detection were 1-20 and 0.28 µM, respectively. The successful AA detection in real juice samples implies the promising use of such mixed-valence MOF nanozymes in food and biomedical samples.


Assuntos
Técnicas Biossensoriais , Cério/química , Colorimetria , Estruturas Metalorgânicas/química , Ácido Ascórbico/análise , Catálise , Concentração de Íons de Hidrogênio , Estruturas Metalorgânicas/síntese química , Temperatura
14.
Anal Bioanal Chem ; 410(13): 3161-3170, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29594429

RESUMO

Small molecules are difficult to detect by conventional gold lateral flow assay (GLFA) sensitively because the test system must satisfy the conflict requirements between enough signal intensity and limited antibody (Ab) amount. In this work, a paired labels recognition (PLR)-based biosensor was designed by utilizing the specific binding of Ab and secondary antibody (anti-Ab) to enhance signal intensity and reduce antibody amount applied in small molecule detection. The PLR amplification system is fabricated by self-assembling the common detection probe, Au-labeled Ab (Au-Ab), and the signal booster, Au-labeled anti-Ab (Au-anti-Ab). Benefiting from this, a powerful network structure can be generated to accumulate numerous gold nanoparticles (GNPs) and thus significantly strengthen the signal intensity of detection. Therefore, a lower Ab amount will be applied to offer adequate signal strength, and further, the limit of detection will be obviously downregulated due to the more effective competition reaction. Using furazolidone (FZD) as a model analyte, we achieve a detection limit of as low as 1 ng mL-1, which was at least fivefold improved over that of the traditional GLFA. Furthermore, the practicality of this strategy was certificated in five different food samples. Graphical abstract A paired labels recognition (PLR) amplification system is fabricated by self-assembling the common detection probe, Au-labeled Ab (Au-Ab), and the signal booster, Au-labeled anti-Ab (Au-anti-Ab). In this novel strategy, owing to the recognition of both Ab and anti-Ab labeled on gold nanoparticles (GNPs), a powerful network structure can be generated to accumulate numerous GNPs and thus significantly strengthen the signal intensity of detection.


Assuntos
Anti-Infecciosos Locais/análise , Técnicas Biossensoriais/instrumentação , Análise de Alimentos/instrumentação , Furazolidona/análise , Ouro/química , Nanopartículas Metálicas/química , Fitas Reagentes/análise , Animais , Anticorpos Imobilizados/química , Galinhas , Desenho de Equipamento , Limite de Detecção , Carne/análise , Leite/química , Penaeidae , Carne Vermelha/análise , Frutos do Mar/análise , Suínos
15.
Biotechnol J ; 19(3): e2300688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479991

RESUMO

Filamentous bacteriophage display technology has been employed in antibody discovery, drug screening, and protein-protein interaction study across various fields, including food safety, agricultural pollution, and environmental monitoring. Antifilamentous bacteriophage antibodies for identifying filamentous bacteriophage are playing a pivotal role in this technology. However, the existing antifilamentous bacteriophage antibodies lack sensitivity and specificity, and the antibodies preparation methods are cumbersome and hyposensitive. The major coat protein pVIII of filamentous bacteriophage has an advantage in quantification, which is benefit for detecting signal amplification but its full potential remains underutilized. In this study, the partial polypeptide CT21 of the major coat protein pVIII of filamentous bacteriophage was intercepted as the targeted immunogen or coating antigen to prepare antifilamentous bacteriophage antibodies. Six filamentous bacteriophage-specific monoclonal antibodies (mAbs) M5G8, M9A2, P6B5, P6D2, P8E4, and P10D4 were obtained. The limit of detections of the prepared six mAbs for detecting filamentous bacteriophage was 1.0 × 107  pfu mL-1 . These mAbs stayed stable under different pH, temperature, and exhibited high specificity in real application. This study not only provides a new idea for simplifying the preparation of antifilamentous bacteriophage antibodies which could apply in filamentous bacteriophage display, but it also presents a novel strategy for preparing antibodies against protein-specific epitopes with high sensitivity.


Assuntos
Inovirus , Inovirus/genética , Inovirus/metabolismo , Anticorpos Monoclonais/metabolismo , Capsídeo , Peptídeos/metabolismo , Epitopos
16.
Int J Biol Macromol ; : 136762, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39486741

RESUMO

Emerging luminogens with aggregation-induced emission properties, namely AIEgens, demonstrated excellent anti-bacteria activity potential. However, their application still limited by the low antibacterial activity caused by the poor binding with bacteria. Polydopamine (PDA), an important biological macromolecule, possesses superior adhesion ability toward various material surface, including bacteria. In this study, the novel mussel-like PDA-assisted AIE Nanodot was proposed, achieving with robust bacterial binding ability and enhanced broad-spectrum antibacterial activity. Binding ability inherited from the PDA enables the constructed PDA-assisted AIE Nanodot to adhere efficiently to the bacterial membrane surface. Meanwhile, the AIE properties endowed them with monitoring capability, allowing for tracking their interaction with bacteria through facile fluorescence imaging in real time. More importantly, excellent killing of both Gram-positive and Gram-negative bacteria were successfully achieved in vitro antibacterial tests with excellent biocompatibility. Furthermore, in the treatment of Methicillin-resistant S. aureus (MRSA)-infected mouse-wound model, the mice exhibited accelerated wound healing with low bacterial load. This novel integrated strategy introduced a simple but effectively design to enhance the binding and antibacterial ability of AIEgens and would diversify the existing pool of antibacterial agents.

17.
Biosens Bioelectron ; 267: 116779, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39288706

RESUMO

In this study, we incorporated nanometal surface energy transfer (NSET) in lateral flow immunoassay (LFIA) and explored the relationship between fluorescence quenching efficiency and detection sensitivity to improve sensitivity of NSET-LFIA system. We developed nine gold nanoparticles (GNPs) with absorption spectrum in the range of 520-605 nm as acceptors and quantum dot microspheres (QDMs) with emission spectrum of 530, 570, and 610 nm as donors. By analyzing the overlap integral area, fluorescence quenching efficiency, and detection sensitivity of 27 donor-acceptor pairs, we observed that the larger overlap integral area led to higher fluorescence quenching efficiency and detection sensitivity. A maximum fluorescence quenching efficiency of 91.0% was obtained from the combination of GNPs at 605 nm and QDMs at 610 nm, achieving the highest detection sensitivity. We developed NSET-LFIA for the detection of T2 toxin with a limit of detection of 0.04 ng/mL, which was 10-times higher than that obtained via conventional GNP-LFIA. NSET-LFIA represents a versatile, ultrasensitive and valuable screening tool for small molecules in real samples.

18.
Int J Biol Macromol ; 258(Pt 2): 128923, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151088

RESUMO

Engineered collaborative biochemical techniques and regulated nanomaterials (NMs) offer extraordinary opportunities for improving the analysis performance of lateral flow immunoassay (LFIA). Herein, inspired by the ability of macromolecules (e.g., proteins) to assemble into new functional units and the remarkable optical performance of engineered regulated NMs, goat anti-mouse immunoglobulin (GAMI) serves as the "crosslinker" integrate with gold­manganese oxide (Au-MnOx) to assemble the "signal tracers (STs)-crosslinker-antibody (mAb)" for elevating the mAb utilization efficiency. Notably, the "STs-crosslinker-mAb" assembly shows ~13.33-folds mAb utilization efficiency enhance, which perfectly response the challenge between limited sensitivity and sufficient signal intensity in competitive-type LFIA. The black color and rough structure of Au-MnOx offer higher colorimetric brightness (~2-folds than AuNPs) and enhanced mAb coupling efficiency (up to 92.47%), which further improves sensitivity under the premise of functional assembly to intensify the competitive immunoreaction. Additionally, the convenient synthesis conditions (~13 min at room temperature) even comparable to direct purchase commercial products indicate that using Au-MnOx undoubtedly increases the cost-effectiveness. Encouragingly, the Au-MnOx-GAMI-mAb based LFIA exhibited high sensitivity (LOD: 0.063 ng mL-1 for clenbuterol (CLE) monitoring) by elevating mAb utilization efficiency with the attendant enhancing immune competition response in a cost-effective manner, which provides an invigorating reference pathway in point-of-care immunoassay.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Ouro/química , Cabras , Nanopartículas Metálicas/química , Imunoensaio/métodos , Anticorpos Monoclonais , Limite de Detecção
19.
J Agric Food Chem ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624165

RESUMO

Immunochromatography (ICA) remains untapped toward enhanced sensitivity and applicability for fulfilling the nuts and bolts of on-site food safety surveillance. Herein, we report a fortified dual-spectral overlap with enhanced colorimetric/fluorescence dual-response ICA for on-site bimodal-type gentamicin (Gen) monitoring by employing polydopamine (PDA)-coated AuNPs (APDA) simultaneously serving as a colorimetric reporter and a fluorescence quencher. Availing of the enhanced colorimetric response that originated from the PDA layer, the resultant APDA exhibits less required antibody and immunoprobes in a single immunoassay, which facilitates improved antibody utilization efficiency and immuno-recognition in APDA-ICA. Further integrated with the advantageous features of fortified excitation and emission dual-spectral overlap for the Arg/ATT-AuNCs, this APDA-ICA with a "turn on/off" pattern achieves the visual limits of detection of 1.0 and 0.5 ng mL-1 for colorimetric and fluorescence patterns (25- and 50-fold lower than standard AuNPs-ICA). Moreover, the excellent self-calibration and satisfactory recovery of 79.03-118.04% were shown in the on-site visual colorimetric-fluorescence analysis for Gen in real environmental media (including real river water, an urban aquaculture water body, an aquatic product, and an animal byproduct). This work provides the feasibility of exploiting fortified dual-spectral overlap with an enhanced colorimetric/fluorescence dual response for safeguarding food safety and public health.

20.
Food Chem ; 441: 138374, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38219366

RESUMO

In this work, an ultra-sensitive lateral flow immunoassay (LFIA) with SERS/colorimetric dual signal mode was constructed for the detection of nitrofurazone metabolites, an antibiotic prohibited in animal-origin foods. Au@4-MBN@AgNRs nano-sandwich structural signal tag integrates the unique advantages of high signal-to-background ratio and anti-matrix interference through geometric control of SERS tag and nanoengineering adjustment of chemical composition. Under the optimal conditions, the detection limits of nitrofurazone metabolites by SERS/colorimetric dual-mode LFIA were 20 pg/mL (colorimetric mode) and 0.08 pg/mL (SERS mode). Excitingly, the vLOD of the colorimetric signal improved by a factor of 100 compared to Au NPs-based LFIA. In this study, the proposed dual-mode LFIA was successfully applied to the on-site real-time detection of honey, milk powder, and chicken. It is anticipated that with low background interference and anti-matrix interference output signal, our proposed dual-mode strategy can pave an innovative pathway for the fabrication of a powerful biosensor.


Assuntos
Nanopartículas Metálicas , Nitrofurazona , Animais , Ouro/química , Imunoensaio , Antibacterianos , Colorimetria , Nanopartículas Metálicas/química , Limite de Detecção , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA