Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Glob Chang Biol ; 30(5): e17335, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771086

RESUMO

Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.


Assuntos
Migração Animal , Mudança Climática , Comportamento de Nidação , Estações do Ano , Animais , Regiões Árticas , Migração Animal/fisiologia , Feminino , Charadriiformes/fisiologia , Reprodução
2.
Mol Ecol ; 28(10): 2531-2545, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30980689

RESUMO

Gulls (Larus spp.) have frequently been reported to carry Escherichia coli exhibiting antimicrobial resistance (AMR E. coli); however, the pathways governing the acquisition and dispersal of such bacteria are not well described. We equipped 17 landfill-foraging gulls with satellite transmitters and collected gull faecal samples longitudinally from four locations on the Kenai Peninsula, Alaska to assess: (a) gull attendance and transitions between sites, (b) spatiotemporal prevalence of faecally shed AMR E. coli, and (c) genomic relatedness of AMR E. coli isolates among sites. We also sampled Pacific salmon (Oncorhynchus spp.) harvested as part of personal-use dipnet fisheries at two sites to assess potential contamination with AMR E. coli. Among our study sites, marked gulls most commonly occupied the lower Kenai River (61% of site locations) followed by the Soldotna landfill (11%), lower Kasilof River (5%) and upper Kenai River (<1%). Gulls primarily moved between the Soldotna landfill and the lower Kenai River (94% of transitions among sites), which were also the two locations with the highest prevalence of AMR E. coli. There was relatively high spatial and temporal variability in AMR E. coli prevalence in gull faeces and there was no evidence of contamination on salmon harvested in personal-use fisheries. We identified E. coli sequence types and AMR genes of clinical importance, with some isolates possessing genes associated with resistance to as many as eight antibiotic classes. Our findings suggest that gulls acquire AMR E. coli at habitats with anthropogenic inputs and subsequent movements may represent pathways through which AMR is dispersed.


Assuntos
Charadriiformes/microbiologia , Infecções por Escherichia coli/transmissão , Escherichia coli/crescimento & desenvolvimento , Face/microbiologia , Alaska , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Humanos
3.
Glob Chang Biol ; 24(1): 410-423, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994242

RESUMO

The effects of declining Arctic sea ice on local ecosystem productivity are not well understood but have been shown to vary inter-specifically, spatially, and temporally. Because marine mammals occupy upper trophic levels in Arctic food webs, they may be useful indicators for understanding variation in ecosystem productivity. Polar bears (Ursus maritimus) are apex predators that primarily consume benthic and pelagic-feeding ice-associated seals. As such, their productivity integrates sea ice conditions and the ecosystem supporting them. Declining sea ice availability has been linked to negative population effects for polar bears but does not fully explain observed population changes. We examined relationships between spring foraging success of polar bears and sea ice conditions, prey productivity, and general patterns of ecosystem productivity in the Beaufort and Chukchi Seas (CSs). Fasting status (≥7 days) was estimated using serum urea and creatinine levels of 1,448 samples collected from 1,177 adult and subadult bears across three subpopulations. Fasting increased in the Beaufort Sea between 1983-1999 and 2000-2016 and was related to an index of ringed seal body condition. This change was concurrent with declines in body condition of polar bears and observed changes in the diet, condition and/or reproduction of four other vertebrate consumers within the food chain. In contrast, fasting declined in CS polar bears between periods and was less common than in the two Beaufort Sea subpopulations consistent with studies demonstrating higher primary productivity and maintenance or improved body condition in polar bears, ringed seals, and bearded seals despite recent sea ice loss in this region. Consistency between regional and temporal variation in spring polar bear fasting and food web productivity suggests that polar bears may be a useful indicator species. Furthermore, our results suggest that spatial and temporal ecological variation is important in affecting upper trophic-level productivity in these marine ecosystems.


Assuntos
Caniformia , Mudança Climática , Cadeia Alimentar , Ursidae , Animais , Regiões Árticas , Dieta , Camada de Gelo , Dinâmica Populacional , Reprodução , Estações do Ano , Ursidae/sangue
4.
Ecology ; 98(7): 1869-1883, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28403519

RESUMO

A full understanding of population dynamics depends not only on estimation of mechanistic contributions of recruitment and survival, but also knowledge about the ecological processes that drive each of these vital rates. The process of recruitment in particular may be protracted over several years, and can depend on numerous ecological complexities until sexually mature adulthood is attained. We addressed long-term declines (23 breeding seasons, 1992-2014) in the per capita production of young by both Ross's Geese (Chen rossii) and Lesser Snow Geese (Chen caerulescens caerulescens) nesting at Karrak Lake in Canada's central Arctic. During this period, there was a contemporaneous increase from 0.4 to 1.1 million adults nesting at this colony. We evaluated whether (1) density-dependent nutritional deficiencies of pre-breeding females or (2) phenological mismatch between peak gosling hatch and peak forage quality, inferred from NDVI on the brood-rearing areas, may have been behind decadal declines in the per capita production of goslings. We found that, in years when pre-breeding females arrived to the nesting grounds with diminished nutrient reserves, the proportional composition of young during brood-rearing was reduced for both species. Furthermore, increased mismatch between peak gosling hatch and peak forage quality contributed additively to further declines in gosling production, in addition to declines caused by delayed nesting with associated subsequent negative effects on clutch size and nest success. The degree of mismatch increased over the course of our study because of advanced vegetation phenology without a corresponding advance in Goose nesting phenology. Vegetation phenology was significantly earlier in years with warm surface air temperatures measured in spring (i.e., 25 May-30 June). We suggest that both increased phenological mismatch and reduced nutritional condition of arriving females were behind declines in population-level recruitment, leading to the recent attenuation in population growth of Snow Geese.


Assuntos
Gansos/fisiologia , Herbivoria , Animais , Regiões Árticas , Canadá , Feminino , Reprodução , Estações do Ano
5.
Glob Chang Biol ; 23(9): 3460-3473, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28586523

RESUMO

Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987-1998 and 1999-2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%-9.6%) or by increasing their travel speed (8.5%-8.9%). This increased their calculated annual energy expenditure by 1.8%-3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1-3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic.


Assuntos
Comportamento de Retorno ao Território Vital , Camada de Gelo , Ursidae , Migração Animal , Animais , Regiões Árticas , Mudança Climática , Ingestão de Energia , Feminino , Oceanos e Mares
6.
Oecologia ; 184(1): 87-99, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28247129

RESUMO

Understanding behavioral responses of species to environmental change is critical to forecasting population-level effects. Although climate change is significantly impacting species' distributions, few studies have examined associated changes in behavior. Polar bear (Ursus maritimus) subpopulations have varied in their near-term responses to sea ice decline. We examined behavioral responses of two adjacent subpopulations to changes in habitat availability during the annual sea ice minimum using activity data. Location and activity sensor data collected from 1989 to 2014 for 202 adult female polar bears in the Southern Beaufort Sea (SB) and Chukchi Sea (CS) subpopulations were used to compare activity in three habitat types varying in prey availability: (1) land; (2) ice over shallow, biologically productive waters; and (3) ice over deeper, less productive waters. Bears varied activity across and within habitats with the highest activity at 50-75% sea ice concentration over shallow waters. On land, SB bears exhibited variable but relatively high activity associated with the use of subsistence-harvested bowhead whale carcasses, whereas CS bears exhibited low activity consistent with minimal feeding. Both subpopulations had fewer observations in their preferred shallow-water sea ice habitats in recent years, corresponding with declines in availability of this substrate. The substantially higher use of marginal habitats by SB bears is an additional mechanism potentially explaining why this subpopulation has experienced negative effects of sea ice loss compared to the still-productive CS subpopulation. Variability in activity among, and within, habitats suggests that bears alter their behavior in response to habitat conditions, presumably in an attempt to balance prey availability with energy costs.


Assuntos
Mudança Climática , Ursidae , Animais , Regiões Árticas , Ecossistema , Camada de Gelo , Estações do Ano
7.
Nature ; 468(7326): 955-8, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21164484

RESUMO

On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout and beyond the Arctic.


Assuntos
Ecossistema , Espécies em Perigo de Extinção/tendências , Efeito Estufa/prevenção & controle , Camada de Gelo , Ursidae/fisiologia , Animais , Organismos Aquáticos , Regiões Árticas , Teorema de Bayes , Dióxido de Carbono/análise , Espécies em Perigo de Extinção/estatística & dados numéricos , Monitoramento Ambiental , Gases/análise , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Efeito Estufa/estatística & dados numéricos , Modelos Teóricos , Densidade Demográfica , Comportamento Predatório , Estações do Ano , Água do Mar/análise , Água do Mar/química , Temperatura , Termodinâmica , Fatores de Tempo
8.
Parasitol Res ; 115(10): 3923-39, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27283961

RESUMO

Blue-winged teal (Anas discors) are abundant, small-bodied dabbling ducks that breed throughout the prairies of the northcentral USA and central Canada and that winter in the southern USA and northern Neotropics. Given the migratory tendencies of this species, it is plausible that blue-winged teal may disperse avian pathogens, such as parasites causing avian malaria, between spatially distant areas. To test the hypothesis that blue-winged teal play a role in the exchange of blood parasites between North America and areas further south, we collected information on migratory tendencies of this species and sampled birds at spatially distant areas during breeding and non-breeding periods to diagnose and genetically characterize parasitic infections. Using a combination of band recovery data, satellite telemetry, molecular diagnostics, and genetic analyses, we found evidence for (1) migratory connectivity of blue-winged teal between our sampling locations in the Canadian prairies and along the US Gulf Coast with areas throughout the northern Neotropics, (2) parasite acquisition at both breeding and non-breeding areas, (3) infection of blue-winged teal sampled in Canada and the USA with Plasmodium parasite lineages associated with the Neotropics, and (4) infection of blue-winged teal with parasites that were genetically related to those previously reported in waterfowl in both North America and South America. Collectively, our results suggest that blue-winged teal likely play a role in the dispersal of blood parasites between the Neotropics and North America, and therefore, the targeting of this species in surveillance programs for the early detection of Neotropical-origin avian pathogens in the USA may be informative.


Assuntos
Doenças das Aves/epidemiologia , Patos/parasitologia , Malária/epidemiologia , Parasitemia/veterinária , Plasmodium/isolamento & purificação , Migração Animal , Animais , Doenças das Aves/parasitologia , Canadá/epidemiologia , Geografia , Malária/parasitologia , América do Norte/epidemiologia , Parasitemia/epidemiologia , Parasitemia/parasitologia , Filogenia , Plasmodium/genética , Estações do Ano , América do Sul/epidemiologia , Estados Unidos/epidemiologia
9.
Ecol Appl ; 25(3): 634-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26214910

RESUMO

In the southern Beaufort Sea of the United States and Canada, prior investigations have linked declines in summer sea ice to reduced physical condition, growth, and survival of polar bears (Ursus maritimus). Combined with projections of population decline due to continued climate warming and the ensuing loss of sea ice habitat, those findings contributed to the 2008 decision to list the species as threatened under the U.S. Endangered Species Act. Here, we used mark-recapture models to investigate the population dynamics of polar bears in the southern Beaufort Sea from 2001 to 2010, years during which the spatial and temporal extent of summer sea ice generally declined. Low survival from 2004 through 2006 led to a 25-50% decline in abundance. We hypothesize that low survival during this period resulted from (1) unfavorable ice conditions that limited access to prey during multiple seasons; and possibly, (2) low prey abundance. For reasons that are not clear, survival of adults and cubs began to improve in 2007 and abundance was comparatively stable from 2008 to 2010, with ~900 bears in 2010 (90% CI 606-1212). However, survival of subadult bears declined throughout the entire period. Reduced spatial and temporal availability of sea ice is expected to increasingly force population dynamics of polar bears as the climate continues to warm. However, in the short term, our findings suggest that factors other than sea ice can influence survival. A refined understanding of the ecological mechanisms underlying polar bear population dynamics is necessary to improve projections of their future status and facilitate development of management strategies.


Assuntos
Distribuição Animal/fisiologia , Camada de Gelo , Ursidae/fisiologia , Animais , Canadá , Mudança Climática , Simulação por Computador , Modelos Biológicos , Dinâmica Populacional , Análise de Sobrevida , Fatores de Tempo , Estados Unidos
10.
Glob Chang Biol ; 20(1): 76-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23913506

RESUMO

Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986-1994 and 2008-2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008-2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008-2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986-1994 and 2008-2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species.


Assuntos
Mudança Climática , Comportamento Alimentar , Reprodução , Ursidae/fisiologia , Animais , Regiões Árticas , Tamanho Corporal , Dieta , Ecossistema , Feminino , Camada de Gelo , Masculino , Oceanos e Mares
11.
Ecol Evol ; 11(20): 14250-14267, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34707852

RESUMO

The Arctic Ocean is undergoing rapid transformation toward a seasonally ice-free ecosystem. As ice-adapted apex predators, polar bears (Ursus maritimus) are challenged to cope with ongoing habitat degradation and changes in their prey base driven by food-web response to climate warming. Knowledge of polar bear response to environmental change is necessary to understand ecosystem dynamics and inform conservation decisions. In the southern Beaufort Sea (SBS) of Alaska and western Canada, sea ice extent has declined since satellite observations began in 1979 and available evidence suggests that the carrying capacity of the SBS for polar bears has trended lower for nearly two decades. In this study, we investigated the population dynamics of polar bears in Alaska's SBS from 2001 to 2016 using a multistate Cormack-Jolly-Seber mark-recapture model. States were defined as geographic regions, and we used location data from mark-recapture observations and satellite-telemetered bears to model transitions between states and thereby explain heterogeneity in recapture probabilities. Our results corroborate prior findings that the SBS subpopulation experienced low survival from 2003 to 2006. Survival improved modestly from 2006 to 2008 and afterward rebounded to comparatively high levels for the remainder of the study, except in 2012. Abundance moved in concert with survival throughout the study period, declining substantially from 2003 and 2006 and afterward fluctuating with lower variation around an average of 565 bears (95% Bayesian credible interval [340, 920]) through 2015. Even though abundance was comparatively stable and without sustained trend from 2006 to 2015, polar bears in the Alaska SBS were less abundant over that period than at any time since passage of the U.S. Marine Mammal Protection Act. The potential for recovery is likely limited by the degree of habitat degradation the subpopulation has experienced, and future reductions in carrying capacity are expected given current projections for continued climate warming.

12.
Sci Total Environ ; 764: 144551, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33385653

RESUMO

Anthropogenic inputs into the environment may serve as sources of antimicrobial resistant bacteria and alter the ecology and population dynamics of synanthropic wild animals by providing supplemental forage. In this study, we used a combination of phenotypic and genomic approaches to characterize antimicrobial resistant indicator bacteria, animal telemetry to describe host movement patterns, and a novel modeling approach to combine information from these diverse data streams to investigate the acquisition and long-distance dispersal of antimicrobial resistant bacteria by landfill-foraging gulls. Our results provide evidence that gulls acquire antimicrobial resistant bacteria from anthropogenic sources, which they may subsequently disperse across and between continents via migratory movements. Furthermore, we introduce a flexible modeling framework to estimate the relative dispersal risk of antimicrobial resistant bacteria in western North America and adjacent areas within East Asia, which may be adapted to provide information on the risk of dissemination of other organisms and pathogens maintained by wildlife through space and time.


Assuntos
Anti-Infecciosos , Charadriiformes , Animais , Bactérias , Farmacorresistência Bacteriana , Ásia Oriental , América do Norte , Instalações de Eliminação de Resíduos
13.
Avian Dis ; 54(1 Suppl): 466-76, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20521681

RESUMO

Poyang Lake is situated within the East Asian Flyway, a migratory corridor for waterfowl that also encompasses Guangdong Province, China, the epicenter of highly pathogenic avian influenza (HPAI) H5N1. The lake is the largest freshwater body in China and a significant congregation site for waterfowl; however, surrounding rice fields and poultry grazing have created an overlap with wild waterbirds, a situation conducive to avian influenza transmission. Reports of HPAI H5N1 in healthy wild ducks at Poyang Lake have raised concerns about the potential of resilient free-ranging birds to disseminate the virus. Yet the role wild ducks play in connecting regions of HPAI H5N1 outbreak in Asia is hindered by a lack of information about their migratory ecology. During 2007-08 we marked wild ducks at Poyang Lake with satellite transmitters to examine the location and timing of spring migration and identify any spatiotemporal relationship with HPAI H5N1 outbreaks. Species included the Eurasian wigeon (Anas penelope), northern pintail (Anas acuta), common teal (Anas crecca), falcated teal (Anas falcata), Baikal teal (Anas formosa), mallard (Anas platyrhynchos), garganey (Anas querquedula), and Chinese spotbill (Anas poecilohyncha). These wild ducks (excluding the resident mallard and Chinese spotbill ducks) followed the East Asian Flyway along the coast to breeding areas in northern China, eastern Mongolia, and eastern Russia. None migrated west toward Qinghai Lake (site of the largest wild bird epizootic), thus failing to demonstrate any migratory connection to the Central Asian Flyway. A newly developed Brownian bridge spatial analysis indicated that HPAI H5N1 outbreaks reported in the flyway were related to latitude and poultry density but not to the core migration corridor or to wetland habitats. Also, we found a temporal mismatch between timing of outbreaks and wild duck movements. These analyses depend on complete or representative reporting of outbreaks, but by documenting movements of wild waterfowl, we present ecological knowledge that better informs epidemiological investigations seeking to explain and predict the spread of avian influenza viruses.


Assuntos
Migração Animal , Surtos de Doenças/veterinária , Patos , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/epidemiologia , Animais , Ásia/epidemiologia , Influenza Aviária/virologia , Fatores de Tempo
14.
Ecol Evol ; 10(12): 5595-5616, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32607177

RESUMO

Continued Arctic warming and sea-ice loss will have important implications for the conservation of ringed seals, a highly ice-dependent species. A better understanding of their spatial ecology will help characterize emerging ecological trends and inform management decisions. We deployed satellite transmitters on ringed seals in the summers of 2011, 2014, and 2016 near Utqiagvik (formerly Barrow), Alaska, to monitor their movements, diving, and haul-out behavior. We present analyses of tracking and dive data provided by 17 seals that were tracked until at least January of the following year. Seals mostly ranged north of Utqiagvik in the Beaufort and Chukchi Seas during summer before moving into the southern Chukchi and Bering Seas during winter. In all seasons, ringed seals occupied a diversity of habitats and spatial distributions, from near shore and localized, to far offshore and wide-ranging in drifting sea ice. Continental shelf waters were occupied for >96% of tracking days, during which repetitive diving (suggestive of foraging) primarily to the seafloor was the most frequent activity. From mid-summer to early fall, 12 seals made ~1-week forays off-shelf to the deep Arctic Basin, most reaching the retreating pack-ice, where they spent most of their time hauled out. Diel activity patterns suggested greater allocation of foraging efforts to midday hours. Haul-out patterns were complementary, occurring mostly at night until April-May when midday hours were preferred. Ringed seals captured in 2011-concurrent with an unusual mortality event that affected all ice-seal species-differed morphologically and behaviorally from seals captured in other years. Speculations about the physiology of molting and its role in energetics, habitat use, and behavior are discussed; along with possible evidence of purported ringed seal ecotypes.

15.
Sci Rep ; 10(1): 2592, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054908

RESUMO

Avian influenza (AI) affects wild aquatic birds and poses hazards to human health, food security, and wildlife conservation globally. Accordingly, there is a recognized need for new methods and tools to help quantify the dynamic interaction between wild bird hosts and commercial poultry. Using satellite-marked waterfowl, we applied Bayesian joint hierarchical modeling to concurrently model species distributions, residency times, migration timing, and disease occurrence probability under an integrated animal movement and disease distribution modeling framework. Our results indicate that migratory waterfowl are positively related to AI occurrence over North America such that as waterfowl occurrence probability or residence time increase at a given location, so too does the chance of a commercial poultry AI outbreak. Analyses also suggest that AI occurrence probability is greatest during our observed waterfowl northward migration, and less during the southward migration. Methodologically, we found that when modeling disparate facets of disease systems at the wildlife-agriculture interface, it is essential that multiscale spatial patterns be addressed to avoid mistakenly inferring a disease process or disease-environment relationship from a pattern evaluated at the improper spatial scale. The study offers important insights into migratory waterfowl ecology and AI disease dynamics that aid in better preparing for future outbreaks.


Assuntos
Patos/virologia , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Aves Domésticas/virologia , Animais , Animais Selvagens/virologia , Teorema de Bayes , Galinhas/virologia , Surtos de Doenças/veterinária , Influenza Aviária/virologia , América do Norte/epidemiologia
16.
Proc Biol Sci ; 276(1656): 447-57, 2009 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-18974033

RESUMO

Mountain ranges, deserts, ice fields and oceans generally act as barriers to the movement of land-dependent animals, often profoundly shaping migration routes. We used satellite telemetry to track the southward flights of bar-tailed godwits (Limosa lapponica baueri), shorebirds whose breeding and non-breeding areas are separated by the vast central Pacific Ocean. Seven females with surgically implanted transmitters flew non-stop 8,117-11,680 km (10153+/-1043 s.d.) directly across the Pacific Ocean; two males with external transmitters flew non-stop along the same corridor for 7,008-7,390 km. Flight duration ranged from 6.0 to 9.4 days (7.8+/-1.3 s.d.) for birds with implants and 5.0 to 6.6 days for birds with externally attached transmitters. These extraordinary non-stop flights establish new extremes for avian flight performance, have profound implications for understanding the physiological capabilities of vertebrates and how birds navigate, and challenge current physiological paradigms on topics such as sleep, dehydration and phenotypic flexibility. Predicted changes in climatic systems may affect survival rates if weather conditions at their departure hub or along the migration corridor should change. We propose that this transoceanic route may function as an ecological corridor rather than a barrier, providing a wind-assisted passage relatively free of pathogens and predators.


Assuntos
Migração Animal/fisiologia , Charadriiformes/fisiologia , Ecossistema , Resistência Física , Animais , Feminino , Voo Animal , Masculino , Oceano Pacífico
17.
Ecol Evol ; 9(15): 8625-8638, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31410267

RESUMO

Greenhouse-gas-induced warming in the Arctic has caused declines in sea ice extent and changed its composition, raising concerns by all circumpolar nations for polar bear conservation.Negative impacts have been observed in three well-studied polar bear subpopulations. Most subpopulations, however, receive little or no direct monitoring, hence, resource selection functions (RSF) may provide a useful proxy of polar bear distributions. However, the efficacy of RSFs constructed from past data, that is, reference RSFs, may be degraded under contemporary conditions, especially in a rapidly changing environment.We assessed published Arctic-wide reference RSFs using tracking data from adult female polar bears captured in the Beaufort Sea. We compared telemetry-derived seasonal distributions of polar bears to RSF-defined optimal sea ice habitat during the period of RSF model development, 1985-1995, and two subsequent periods with diminished sea ice: 1996-2006 and 2007-2016. From these comparisons, we assessed the applicability of the reference RSFs for contemporary polar bear conservation.In the two decades following the 1985-1995 reference period, use and availability of optimal habitat by polar bears declined during the ice melt, ice minimum, and ice growth seasons. During the ice maximum season (i.e., winter), polar bears used the best habitat available, which changed relatively little across the three decades of study. During the ice melt, ice minimum, and ice growth seasons, optimal habitat in areas used by polar bears decreased and was displaced north and east of the Alaska Beaufort Sea coast. As optimal habitat diminished in these seasons, polar bears expanded their range and occupied greater areas of suboptimal habitat.Synthesis and applications: Sea ice declines due to climate change continue to challenge polar bears and their conservation. The distribution of Southern Beaufort Sea polar bears remained similar during the ice maximum season, so the reference RSFs developed from data collected >20 years ago continue to accurately model their winter distribution. In contrast, reference RSFs for the ice transitional and minimum seasons showed diminished predictive efficacy but were useful in revealing that contemporary polar bears have been increasingly forced to use suboptimal habitats during those seasons.

18.
PLoS One ; 11(6): e0155932, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27249673

RESUMO

In the Arctic Ocean's southern Beaufort Sea (SB), the length of the sea ice melt season (i.e., period between the onset of sea ice break-up in summer and freeze-up in fall) has increased substantially since the late 1990s. Historically, polar bears (Ursus maritimus) of the SB have mostly remained on the sea ice year-round (except for those that came ashore to den), but recent changes in the extent and phenology of sea ice habitat have coincided with evidence that use of terrestrial habitat is increasing. We characterized the spatial behavior of polar bears spending summer and fall on land along Alaska's north coast to better understand the nexus between rapid environmental change and increased use of terrestrial habitat. We found that the percentage of radiocollared adult females from the SB subpopulation coming ashore has tripled over 15 years. Moreover, we detected trends of earlier arrival on shore, increased length of stay, and later departure back to sea ice, all of which were related to declines in the availability of sea ice habitat over the continental shelf and changes to sea ice phenology. Since the late 1990s, the mean duration of the open-water season in the SB increased by 36 days, and the mean length of stay on shore increased by 31 days. While on shore, the distribution of polar bears was influenced by the availability of scavenge subsidies in the form of subsistence-harvested bowhead whale (Balaena mysticetus) remains aggregated at sites along the coast. The declining spatio-temporal availability of sea ice habitat and increased availability of human-provisioned resources are likely to result in increased use of land. Increased residency on land is cause for concern given that, while there, bears may be exposed to a greater array of risk factors including those associated with increased human activities.


Assuntos
Biologia Marinha , Comportamento Predatório , Ursidae/fisiologia , Animais , Regiões Árticas , Mudança Climática , Camada de Gelo
19.
PLoS One ; 10(11): e0142213, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26580809

RESUMO

Recent observations suggest that polar bears (Ursus maritimus) are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986-1995 and 2008-2013) when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia), highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions.


Assuntos
Ecossistema , Camada de Gelo , Ursidae/fisiologia , Animais , Regiões Árticas , Mudança Climática , Feminino , Humanos , Oceanos e Mares , Reprodução/fisiologia , Federação Russa , Estações do Ano
20.
Front Endocrinol (Lausanne) ; 4: 139, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24133483

RESUMO

Free-ranging bottlenose dolphins (Tursiops truncatus) living in Sarasota Bay, Florida appear to have a lower risk of developing insulin resistance and metabolic syndrome compared to a group of dolphins managed under human care. Similar to humans, differences in diet and activity cycles between these groups may explain why Sarasota dolphins have lower insulin, glucose, and lipids. To identify potential protective factors against metabolic syndrome, existing and new data were incorporated to describe feeding and activity patterns of the Sarasota Bay wild dolphin community. Sarasota dolphins eat a wide variety of live fish and spend 10-20% of daylight hours foraging and feeding. Feeding occurs throughout the day, with the dolphins eating small proportions of their total daily intake in brief bouts. The natural pattern of wild dolphins is to feed as necessary and possible at any time of the day or night. Wild dolphins rarely eat dead fish or consume large amounts of prey in concentrated time periods. Wild dolphins are active throughout the day and night; they may engage in bouts of each key activity category at any time during daytime. Dive patterns of radio-tagged dolphins varied only slightly with time of day. Travel rates may be slightly lower at night, suggesting a diurnal rhythm, albeit not one involving complete, extended rest. In comparison, the managed dolphins are older; often fed a smaller variety of frozen-thawed fish types; fed fish species not in their natural diet; feedings and engaged activities are often during the day; and they are fed larger but fewer meals. In summary, potential protective factors against metabolic syndrome in dolphins may include young age, activity, and small meals fed throughout the day and night, and specific fish nutrients. These protective factors against insulin resistance and type 2 diabetes are similar to those reported in humans. Further studies may benefit humans and dolphins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA