Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Org Chem ; 89(5): 3058-3064, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354334

RESUMO

When electron-rich arylpyrrolinium salts are irradiated with ultraviolet light in the presence of Michael acceptors, the pyrrolinyl and aryl fragments add to the activated and polarized double bond in a regioselective manner, forming two C-C bonds and fragmenting the substrate. In this paper, we present a model for this intriguing reaction, supported by spectroscopy and computational analyses, and provide evidence for rectifying previously misassigned structures. We postulate that the photochemical reaction is inefficient because the reaction between the twisted intramolecular charge-transfer state and the olefin competes with fluorescence from this state upon photon absorption. We also discuss the practical advantages of performing this photochemical reaction in a continuous flow setup. Additionally, we explore several subsequent reactions that allow us to further modify the products of the photochemical step, ultimately leading to the creation of new chemical structures.

2.
Inorg Chem ; 62(25): 9827-9843, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37315176

RESUMO

Incorporation of secondary metal ions into heterobimetallic complexes has emerged as an attractive strategy for rational tuning of compounds' properties and reactivity, but direct solution-phase spectroscopic interrogation of tuning effects has received less attention than it deserves. Here, we report the assembly and study of a series of heterobimetallic complexes containing the vanadyl ion, [VO]2+, paired with monovalent cations (Cs+, Rb+, K+, Na+, and Li+) and a divalent cation (Ca2+). These complexes, which can be isolated in pure form or generated in situ from a common monometallic vanadyl-containing precursor, enable experimental spectroscopic and electrochemical quantification of the influence of the incorporated cations on the properties of the vanadyl moiety. The data reveal systematic shifts in the V-O stretching frequency, isotropic hyperfine coupling constant for the vanadium center, and V(V)/V(IV) reduction potential in the complexes. These shifts can be interpreted as charge density effects parametrized through the Lewis acidities of the cations, suggesting broad potential for the vanadyl ion to serve as a spectroscopic probe in multimetallic species.

3.
Nucleic Acids Res ; 49(14): 7870-7883, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34283224

RESUMO

Risdiplam is the first approved small-molecule splicing modulator for the treatment of spinal muscular atrophy (SMA). Previous studies demonstrated that risdiplam analogues have two separate binding sites in exon 7 of the SMN2 pre-mRNA: (i) the 5'-splice site and (ii) an upstream purine (GA)-rich binding site. Importantly, the sequence of this GA-rich binding site significantly enhanced the potency of risdiplam analogues. In this report, we unambiguously determined that a known risdiplam analogue, SMN-C2, binds to single-stranded GA-rich RNA in a sequence-specific manner. The minimum required binding sequence for SMN-C2 was identified as GAAGGAAGG. We performed all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method, which captured spontaneous binding of a risdiplam analogue to the target nucleic acids. We uncovered, for the first time, a ligand-binding pocket formed by two sequential GAAG loop-like structures. The simulation findings were highly consistent with experimental data obtained from saturation transfer difference (STD) NMR and structure-affinity-relationship studies of the risdiplam analogues. Together, these studies illuminate us to understand the molecular basis of single-stranded purine-rich RNA recognition by small-molecule splicing modulators with an unprecedented binding mode.


Assuntos
Compostos Azo/metabolismo , Atrofia Muscular Espinal/genética , Pirimidinas/metabolismo , Precursores de RNA/genética , Splicing de RNA , Compostos Azo/química , Compostos Azo/uso terapêutico , Sequência de Bases , Sítios de Ligação/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Éxons/genética , Cinética , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Estrutura Molecular , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/metabolismo , Mutação , Fármacos Neuromusculares/química , Fármacos Neuromusculares/metabolismo , Fármacos Neuromusculares/uso terapêutico , Conformação de Ácido Nucleico , Pirimidinas/química , Pirimidinas/uso terapêutico , Precursores de RNA/química , Precursores de RNA/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética
4.
Drug Metab Dispos ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35878926

RESUMO

Cytochrome P450 2D6 (CYP2D6), is responsible for the metabolism and elimination of approximately 25% of clinically used drugs, including antidepressants and antipsychotics, and its activity varies considerably on a population basis primary due to genetic variation. CYP2D6 phenotype can be assessed in vivo following administration of an exogenous probe compound, such as dextromethorphan or debrisoquine, but use of a biomarker that does not require administration of an exogenous compound (i.e., drug) has considerable appeal for assessing CYP2D6 activity in vulnerable populations, such as children. The goal of this study was to isolate, purify and identify an "endogenous" urinary biomarker (M1; m/z 444.3102) of CYP2D6 activity reported previously. Several chromatographic separation techniques (reverse phase HPLC, cation exchange and analytical reverse phase UPLC) were used to isolate and purify 96 µg of M1 from 40 L of urine. Subsequently, 1D and 2D NMR, and functional group modification reactions were used to elucidate its structure. Analysis of mass spectrometry and NMR data revealed M1 to have similar spectroscopic features to the nitrogen-containing steroidal alkaloid, solanidine. 2D NMR characterization by HMBC, COSY, TOCSY, and HSQC-TOCSY proved to be invaluable in the structural elucidation of M1; derivatization of M1 revealed the presence of two carboxylic acid moieties. M1 was determined to be a steroidal alkaloid with a solanidine backbone that had undergone C-C bond scission to yield 3,4-seco-solanidine-3,4-dioic acid (SSDA). SSDA may have value as a dietary biomarker of CYP2D6 activity in populations where potato consumption is common. Significance Statement Endogenous biomarkers of processes involved in drug disposition and response may allow improved individualization of drug treatment, especially in vulnerable populations, such as children. Given that several CYP2D6 substrates are commonly used in pediatrics and the ubiquitous nature of potato consumption in western diets, SSDA has considerable appeal as non-invasive biomarker of CYP2D6 activity to guide treatment with CYP2D6 substrates in children and adults.

5.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430446

RESUMO

Lysyl oxidase-2 (LOXL2) is a Cu2+ and lysine tyrosylquinone (LTQ)-dependent amine oxidase that catalyzes the oxidative deamination of peptidyl lysine and hydroxylysine residues to promote crosslinking of extracellular matrix proteins. LTQ is post-translationally derived from Lys653 and Tyr689, but its biogenesis mechanism remains still elusive. A 2.4 Å Zn2+-bound precursor structure lacking LTQ (PDB:5ZE3) has become available, where Lys653 and Tyr689 are 16.6 Å apart, thus a substantial conformational rearrangement is expected to take place for LTQ biogenesis. However, we have recently shown that the overall structures of the precursor (no LTQ) and the mature (LTQ-containing) LOXL2s are very similar and disulfide bonds are conserved. In this study, we aim to gain insights into the spatial arrangement of LTQ and the active site Cu2+ in the mature LOXL2 using a recombinant LOXL2 that is inhibited by 2-hydrazinopyridine (2HP). Comparative UV-vis and resonance Raman spectroscopic studies of the 2HP-inhibited LOXL2 and the corresponding model compounds and an EPR study of the latter support that 2HP-modified LTQ serves as a tridentate ligand to the active site Cu2. We propose that LTQ resides within 2.9 Å of the active site of Cu2+ in the mature LOXL2, and both LTQ and Cu2+ are solvent-exposed.


Assuntos
Lisina , Proteína-Lisina 6-Oxidase , Lisina/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Domínio Catalítico , Quinonas/química
6.
Mol Pharm ; 18(8): 3086-3098, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34255531

RESUMO

Peptide drugs face several barriers to oral delivery, including enzymatic degradation in the gastrointestinal tract and low membrane permeability. Importantly, the direct interaction between various biorelevant colloids (i.e., bile salt micelles and bile salt-phospholipid mixed micelles) present in the aqueous gastrointestinal environment and peptide drug molecules has not been studied. In this work, we systematically characterized interactions between a water-soluble model peptide drug, octreotide, and a range of physiologically relevant bile salts in solution. Octreotide membrane flux in pure bile salt solutions and commercially available biorelevant media, i.e., fasted state simulated intestinal fluid (FaSSIF) and fed state simulated intestinal fluid (FeSSIF), was evaluated using a side-by-side diffusion cell equipped with a cellulose dialysis membrane. All seven micellar bile salt solutions as well as FaSSIF and FeSSIF decreased octreotide membrane flux, and dihydroxy bile salts were found to have a much larger effect than trihydroxy bile salts. An inverse relationship between octreotide membrane flux and pancreatic enzymatic stability was also observed; bile salt micelles and bile salt-phospholipid mixed micelles provided a protective effect toward enzymatic degradation and prolonged octreotide half-life in vitro. Diffusion ordered nuclear magnetic resonance (DOSY NMR) spectroscopy and dynamic light scattering (DLS) were used as complementary experimental techniques to confirm peptide-micelle interactions in solution. Experiments were also performed using desmopressin as a second model peptide drug; desmopressin interacted with bile salts in solution, albeit to a lower extent relative to octreotide. The findings described herein demonstrate that amphiphilic, water-soluble peptide drugs do interact with bile salts and phospholipids in solution, with an effect on peptide membrane flux and enzymatic stability. Correspondingly, oral peptide drug absorption and bioavailability may be impacted.


Assuntos
Ácidos e Sais Biliares/metabolismo , Desamino Arginina Vasopressina/metabolismo , Mucosa Intestinal/metabolismo , Secreções Intestinais/metabolismo , Octreotida/metabolismo , Disponibilidade Biológica , Celulose , Coloides/metabolismo , Desamino Arginina Vasopressina/farmacocinética , Meia-Vida , Absorção Intestinal/efeitos dos fármacos , Membranas Artificiais , Micelas , Octreotida/química , Octreotida/farmacocinética , Pancreatina/metabolismo , Fosfolipídeos/metabolismo , Solubilidade , Soluções , Água/química
7.
Biochemistry ; 59(41): 4039-4050, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32941008

RESUMO

The tumor suppressor Adenomatous polyposis coli (APC) is a large, multidomain protein with many identified cellular functions. The best characterized role of APC is to scaffold a protein complex that negatively regulates Wnt signaling via ß-catenin destruction. This destruction is mediated by ß-catenin binding to centrally located 15- and 20-amino acid repeat regions of APC. More than 80% of cancers of the colon and rectum present with an APC mutation. Most carcinomas with mutant APC express a truncated APC protein that retains the ∼200-amino acid long' 15-amino acid repeat region'. This study demonstrates that the 15-amino acid repeat region of APC is intrinsically disordered. We investigated the backbone dynamics in the presence of ß-catenin and predicted residues that may contribute to transient secondary features. This study reveals that the 15-amino acid region of APC retains flexibility upon binding ß-catenin and that APC does not have a single, observable "highest-affinity" binding site for ß-catenin. This flexibility potentially allows ß-catenin to be more readily captured by APC and then remain accessible to other elements of the destruction complex for subsequent processing.


Assuntos
Proteína da Polipose Adenomatosa do Colo/química , Proteína da Polipose Adenomatosa do Colo/metabolismo , beta Catenina/metabolismo , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Sítios de Ligação , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Mutação/genética , Fosforilação , Ligação Proteica , beta Catenina/química , beta Catenina/genética
8.
Proteins ; 88(4): 573-583, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31603583

RESUMO

Musashi-2 (MSI2) belongs to Musashi family of RNA binding proteins (RBP). Like Musashi-1 (MSI1), it is overexpressed in a variety of cancers and is a promising therapeutic target. Both MSI proteins contain two N-terminal RNA recognition motifs and play roles in posttranscriptional regulation of target mRNAs. Previously, we have identified several inhibitors of MSI1, all of which bind to MSI2 as well. In order to design MSI2-specific inhibitors and compare the differences of binding mode of the inhibitors, we set out to solve the structure of MSI2-RRM1, the key motif that is responsible for the binding. Here, we report the crystal structure and the first NMR solution structure of MSI2-RRM1, and compare these to the structures of MSI1-RBD1 and other RBPs. A high degree of structural similarity was observed between the crystal and solution NMR structures. MSI2-RRM1 shows a highly similar overall folding topology to MSI1-RBD1 and other RBPs. The structural information of MSI2-RRM1 will be helpful for understanding MSI2-RNA interaction and for guiding rational drug design of MSI2-specific inhibitors.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas Oncogênicas/química , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Motivo de Reconhecimento de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
9.
J Am Chem Soc ; 142(7): 3351-3355, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31999444

RESUMO

γ-Secretase is a membrane-embedded aspartyl protease complex central in biology and medicine. How this enzyme recognizes transmembrane substrates and catalyzes hydrolysis in the lipid bilayer is unclear. Inhibitors that mimic the entire substrate transmembrane domain and engage the active site should provide important tools for structural biology, yielding insight into substrate gating and trapping the protease in the active state. Here, we report transmembrane peptidomimetic inhibitors of the γ-secretase complex that contain an N-terminal helical peptide region that engages a substrate docking exosite and a C-terminal transition-state analog moiety targeted to the active site. Both regions are required for stoichiometric inhibition of γ-secretase. Moreover, enzyme inhibition kinetics and photoaffinity probe displacement experiments demonstrate that both the docking exosite and the active site are engaged by the bipartite inhibitors. The solution conformations of these potent transmembrane-mimetic inhibitors are similar to those of bound natural substrates, suggesting these probes are preorganized for high-affinity binding and should allow visualization of the active γ-secretase complex, poised for intramembrane proteolysis, by cryo-electron microscopy.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptidomiméticos/química , Inibidores de Proteases/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Domínio Catalítico , Células HEK293 , Humanos , Cinética , Simulação de Acoplamento Molecular , Peptidomiméticos/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice
10.
J Org Chem ; 85(16): 10451-10465, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32697905

RESUMO

gem-Difluoroalkenes represent valuable synthetic handles for organofluorine chemistry; however, most reactions of this substructure proceed through reactive intermediates prone to eliminate a fluorine atom and generate monofluorinated products. Taking advantage of the distinct reactivity of gem-difluoroalkenes, we present a cobalt-catalyzed regioselective unsymmetrical dioxygenation of gem-difluoroalkenes using phenols and molecular oxygen, which retains both fluorine atoms and provides ß-phenoxy-ß,ß-difluorobenzyl alcohols. Mechanistic studies suggest that the reaction operates through a radical chain process initiated by Co(II)/O2/phenol and quenched by the Co-based catalyst. This mechanism enables the retention of both fluorine atoms, which contrasts most transition-metal-catalyzed reactions of gem-difluoroalkenes that typically involve defluorination.


Assuntos
Cobalto , Flúor , Catálise , Fluoretos
11.
Bioorg Med Chem ; 28(13): 115547, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32546297

RESUMO

A collection of small molecules has been synthesized by composing photo-cycloaddition, C-H functionalization, and N-capping strategies. Multidimensional biological fingerprints of molecules comprising this collection have been recorded as changes in cell and organelle morphology. This untargeted, phenotypic approach allowed for a broad assessment of biological activity to be determined. Reproducibility and the magnitude of measured fingerprints revealed activity of several treatments. Reactive functional groups, such as imines, dominated the observed activity. Two non-reactive candidate compounds with distinct bioactivity fingerprints were identified, as well.


Assuntos
Pirrolidinas/síntese química , Pirrolidinas/metabolismo , Aminas/química , Linhagem Celular , Ciclização , Reação de Cicloadição , Humanos , Iminas/química , Imagem Óptica , Organelas/metabolismo , Organelas/ultraestrutura , Processos Fotoquímicos , Reprodutibilidade dos Testes , Estereoisomerismo
12.
J Bacteriol ; 200(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29735757

RESUMO

Burkholderia pseudomallei, the causative agent of melioidosis, encodes almost a dozen predicted polyketide (PK) biosynthetic gene clusters. Many of these are regulated by LuxR-I-type acyl-homoserine (AHL) quorum-sensing systems. One of the PK gene clusters, the mal gene cluster, is conserved in the close relative Burkholderia thailandensis The B. thailandensis mal genes code for the cytotoxin malleilactone and are regulated by a genetically linked LuxR-type transcription factor, MalR. Although AHLs typically interact with LuxR-type proteins to modulate gene transcription, the B. thailandensis MalR does not appear to be an AHL receptor. Here, we characterize the mal genes and MalR in B. pseudomallei We use chemical analyses to demonstrate that the B. pseudomallei mal genes code for malleilactone. Our results show that MalR and the mal genes contribute to the ability of B. pseudomallei to kill Caenorhabditis elegans In B. thailandensis, antibiotics like trimethoprim can activate MalR by driving transcription of the mal genes, and we demonstrate that some of the same antibiotics induce expression of B. pseudomallei malR We also demonstrate that B. pseudomallei MalR does not respond directly to AHLs. Our results suggest that MalR is indirectly repressed by AHLs, possibly through a repressor, ScmR. We further show that malleilactone is a B. pseudomallei virulence factor and provide the foundation for understanding how malleilactone contributes to the pathology of melioidosis infections.IMPORTANCE Many bacterially produced polyketides are cytotoxic to mammalian cells and are potentially important contributors to pathogenesis during infection. We are interested in the polyketide gene clusters present in Burkholderia pseudomallei, which causes the often-fatal human disease melioidosis. Using knowledge gained by studies in the close relative Burkholderia thailandensis, we show that one of the B. pseudomallei polyketide biosynthetic clusters produces a cytotoxic polyketide, malleilactone. Malleilactone contributes to B. pseudomallei virulence in a Caenorhabditis elegans infection model and is regulated by an orphan LuxR family quorum-sensing transcription factor, MalR. Our studies demonstrate that malleilactone biosynthesis or MalR could be new targets for developing therapeutics to treat melioidosis.


Assuntos
Antibacterianos/farmacologia , Burkholderia pseudomallei/metabolismo , Lactonas/metabolismo , Percepção de Quorum/fisiologia , Fatores de Virulência/metabolismo , Células A549 , Animais , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Caenorhabditis elegans/microbiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Células Jurkat , Virulência/genética
13.
Inorg Chem ; 57(13): 7825-7837, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29927591

RESUMO

The solution properties of MnIII-hydroxo and MnIII-methoxy complexes featuring N5 amide-containing ligands were investigated using 1H NMR spectroscopy. The 1H NMR spectrum for one of these complexes, the previously reported [MnIII(OH)(dpaq)](OTf) (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino- N-quinolin-8-yl-acetamidate) shows hyperfine-shifted signals, as expected for this S = 2 MnIII-hydroxo adduct. However, the 1H NMR spectrum of [MnIII(OH)(dpaq)](OTf) also shows a large number of proton resonances in the diamagnetic region, suggesting the presence of multiple species in CD3CN solution. The majority of the signals in the diamagnetic region disappear when a small amount of water is added to a CH3CN solution of [MnIII(OH)(dpaq)](OTf). Electronic absorption and Mn K-edge X-ray absorption experiments support the formulation of this diamagnetic species as the µ-oxodimanganese(III,III) complex [MnIII2(µ-O)(dpaq)2)]2+. On the basis of these observations, we propose that the dissolution of [MnIII(OH)(dpaq)](OTf) in CD3CN results in the formation of mononuclear MnIII-hydroxo and dinuclear µ-oxodimanganese(III,III) species that are in equilibrium. The addition of a small amount of water is sufficient to shift this equilibrium in favor of the MnIII-hydroxo adduct. Surprisingly, electronic absorption experiments show that the conversion of [MnIII2(µ-O)(dpaq)2)]2+ to [MnIII(OH)(dpaq)]+ by added water is relatively slow. Because this dimer to monomer conversion is slower than TEMPOH oxidation by [MnIII(OH)(dpaq)]+, the previously observed TEMPOH oxidation rates for [MnIII(OH)(dpaq)]+ reflected both processes. Here, we report the bona fide TEMPOH oxidation rate for [MnIII(OH)(dpaq)]+, which is significantly faster than previously reported. 1H NMR spectra are also reported for the related [MnIII(OMe)(dpaq)]+ and [MnIII(OH)(dpaq2Me)]+ complexes. These spectra only show hyperfine-shifted signals, suggesting the presence of only mononuclear MnIII-methoxy and MnIII-hydroxo species in solution. Measurements of T1 relaxation times and proton peak integrations for [MnIII(OMe)(dpaq)]+ provide preliminary assignments for 1H NMR resonances.

14.
Chemistry ; 21(51): 18589-93, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26526115

RESUMO

The room temperature radical decarboxylative allylation of N-protected α-amino acids and esters has been accomplished via a combination of palladium and photoredox catalysis to provide homoallylic amines. Mechanistic investigations revealed that the stability of the α-amino radical, which is formed by decarboxylation, dictates the predominant reaction pathway between competing mechanisms.


Assuntos
Aminas/química , Aminoácidos/química , Ácidos Carboxílicos/química , Descarboxilação , Estrutura Molecular , Oxirredução , Paládio/química , Processos Fotoquímicos
15.
Bioorg Med Chem Lett ; 24(3): 963-8, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24412067

RESUMO

As part of an effort to identify agonists of TRPV1, a peripheral sensory nerve ion channel, high throughput screening of the NIH Small Molecule Repository (SMR) collection identified MLS002174161, a pentacyclic benzodiazepine. A synthesis effort was initiated that ultimately afforded racemic seco analogs 12 of the SMR compound via a silver mediated intramolecular [3+2] cycloaddition of an azo-methine ylide generated from α-iminoamides 11. The cycloaddition set four contiguous stereocenters and, in some cases, also spontaneously afforded imides 13 from 12. The synthesis of compounds 12, the features that facilitated the conversion of 12-13, and their partial agonist activity against TRPV1 are discussed.


Assuntos
Amidas/química , Compostos Azo/química , Benzodiazepinonas/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Iminas/química , Prata/química , Canais de Cátion TRPV/agonistas , Capsaicina/química , Ciclização , Reação de Cicloadição
16.
Methods Enzymol ; 698: 301-342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38886037

RESUMO

Protein-protein interactions between SH2 domains and segments of proteins that include a post-translationally phosphorylated tyrosine residue (pY) underpin numerous signal transduction cascades that allow cells to respond to their environment. Dysregulation of the writing, erasing, and reading of these posttranslational modifications is a hallmark of human disease, notably cancer. Elucidating the precise role of the SH2 domain-containing adaptor proteins Crk and CrkL in tumor cell migration and invasion is challenging because there are no specific and potent antagonists available. Crk and CrkL SH2s interact with a region of the docking protein p130Cas containing 15 potential pY-containing tetrapeptide motifs. This chapter summarizes recent efforts toward peptide antagonists for this Crk/CrkL-p130Cas interaction. We describe our protocol for recombinant expression and purification of Crk and CrkL SH2s for functional assays and our procedure to determine the consensus binding motif from the p130Cas sequence. To develop a more potent antagonist, we employ methods often associated with structure-based drug design. Computational docking using Rosetta FlexPepDock, which accounts for peptides having a greater number of conformational degrees of freedom than small organic molecules that typically constitute libraries, provides quantitative docking metrics to prioritize candidate peptides for experimental testing. A battery of biophysical assays, including fluorescence polarization, differential scanning fluorimetry and saturation transfer difference nuclear magnetic resonance spectroscopy, were employed to assess the candidates. In parallel, GST pulldown competition assays characterized protein-protein binding in vitro. Taken together, our methodology yields peptide antagonists of the Crk/CrkL-p130Cas axis that will be used to validate targets, assess druggability, foster in vitro assay development, and potentially serve as lead compounds for therapeutic intervention.


Assuntos
Proteína Substrato Associada a Crk , Peptídeos , Fosfotirosina , Proteínas Proto-Oncogênicas c-crk , Domínios de Homologia de src , Proteína Substrato Associada a Crk/metabolismo , Proteína Substrato Associada a Crk/química , Proteínas Proto-Oncogênicas c-crk/metabolismo , Proteínas Proto-Oncogênicas c-crk/química , Humanos , Fosfotirosina/metabolismo , Fosfotirosina/química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Ligação Proteica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Simulação de Acoplamento Molecular/métodos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química
17.
Chem Commun (Camb) ; 60(39): 5213-5216, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38652073

RESUMO

The E1/2 potential associated with reduction of the linearly-functionalized 6,6'-biazulenic scaffold is accurately correlated to the combined σp Hammett parameters of the substituents over >600 mV range. X-ray crystallographic analysis of the 2,2'-dichloro-substituted derivative revealed unexpectedly short C-Cl bond distances, along with other metric changes, suggesting a non-trivial cycloheptafulvalene-like structural contribution.

18.
Cell Rep ; 43(2): 113761, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349793

RESUMO

Mutations that cause familial Alzheimer's disease (FAD) are found in amyloid precursor protein (APP) and presenilin, the catalytic component of γ-secretase, that together produce amyloid ß-peptide (Aß). Nevertheless, whether Aß is the primary disease driver remains controversial. We report here that FAD mutations disrupt initial proteolytic events in the multistep processing of APP substrate C99 by γ-secretase. Cryoelectron microscopy reveals that a substrate mimetic traps γ-secretase during the transition state, and this structure aligns with activated enzyme-substrate complex captured by molecular dynamics simulations. In silico simulations and in cellulo fluorescence microscopy support stabilization of enzyme-substrate complexes by FAD mutations. Neuronal expression of C99 and/or presenilin-1 in Caenorhabditis elegans leads to synaptic loss only with FAD-mutant transgenes. Designed mutations that stabilize the enzyme-substrate complex and block Aß production likewise led to synaptic loss. Collectively, these findings implicate the stalled process-not the products-of γ-secretase cleavage of substrates in FAD pathogenesis.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides , Microscopia Crioeletrônica , Mutação/genética , Caenorhabditis elegans/genética , Simulação de Dinâmica Molecular
19.
Chemistry ; 19(38): 12800-5, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23922222

RESUMO

The conversion of an alcohol-based functional group, into a trifluoromethyl analogue is a desirable transformation. However, few methods are capable of converting O-based electrophiles into trifluoromethanes. The copper-mediated trifluoromethylation of benzylic xanthates using Umemoto's reagent as the source of CF3 to form C-CF3 bonds is described. The method is compatible with an array of benzylic xanthates bearing useful functional groups. A preliminary mechanistic investigation suggests that the C-CF3 bond forms by reaction of the substrate with in situ generated CuCF3 and CuOTf. Further evidence suggests that the reaction could proceed via a radical cation intermediate.


Assuntos
Cobre/química , Carbono/química , Catálise , Clorofluorcarbonetos de Metano/química , Oxigênio/química
20.
J Org Chem ; 78(8): 3720-30, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23510238

RESUMO

The discovery and application of a new branching pathway synthesis strategy that rapidly produces skeletally diverse scaffolds is described. Two different scaffold types, one a bicyclic iodo-vinylidene tertiary amine/tertiary alcohol and the other, a spirocyclic 3-furanone, are each obtained using a two-step sequence featuring a common first step. Both scaffold types lead to intermediates that can be orthogonally diversified using the same final components. One of the scaffold types was obtained in sufficiently high yield that it was immediately used to produce a 97-compound library.


Assuntos
Alcinos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Propanóis/química , Compostos de Espiro/química , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA