RESUMO
OBJECTIVE: Seizures are more frequent in patients with Alzheimer's disease (AD) and can hasten cognitive decline. However, the incidence of subclinical epileptiform activity in AD and its consequences are unknown. Motivated by results from animal studies, we hypothesized higher than expected rates of subclinical epileptiform activity in AD with deleterious effects on cognition. METHODS: We prospectively enrolled 33 patients (mean age, 62 years) who met criteria for AD, but had no history of seizures, and 19 age-matched, cognitively normal controls. Subclinical epileptiform activity was assessed, blinded to diagnosis, by overnight long-term video-electroencephalography (EEG) and a 1-hour resting magnetoencephalography exam with simultaneous EEG. Patients also had comprehensive clinical and cognitive evaluations, assessed longitudinally over an average period of 3.3 years. RESULTS: Subclinical epileptiform activity was detected in 42.4% of AD patients and 10.5% of controls (p = 0.02). At the time of monitoring, AD patients with epileptiform activity did not differ clinically from those without such activity. However, patients with subclinical epileptiform activity showed faster declines in global cognition, determined by the Mini-Mental State Examination (3.9 points/year in patients with epileptiform activity vs 1.6 points/year in patients without; p = 0.006), and in executive function (p = 0.01). INTERPRETATION: Extended monitoring detects subclinical epileptiform activity in a substantial proportion of patients with AD. Patients with this indicator of network hyperexcitability are at risk for accelerated cognitive decline and might benefit from antiepileptic therapies. These data call for more sensitive and comprehensive neurophysiological assessments in AD patient evaluations and impending clinical trials. Ann Neurol 2016;80:858-870.
Assuntos
Doença de Alzheimer/epidemiologia , Convulsões/epidemiologia , California/epidemiologia , Estudos de Casos e Controles , Comorbidade , Eletroencefalografia , Feminino , Humanos , Incidência , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Neuroimagem , Testes Neuropsicológicos , Sintomas Prodrômicos , Estudos ProspectivosRESUMO
Schizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control. Healthy comparison subjects were assessed at baseline and after a 10 week no-contact interval. Prior to training, patients (N = 34) showed reduced M100 response in primary auditory cortex relative to healthy participants (N = 13). At reassessment, only the targeted cognitive training patient group (N = 18) exhibited increased M100 responses. Additionally, this group showed increased induced high gamma band activity within left dorsolateral prefrontal cortex immediately after stimulus presentation, and later in bilateral temporal cortices. Training-related changes in neural activity correlated with changes in executive function scores but not verbal learning and memory. These data suggest that computerized cognitive training that targets auditory and verbal learning operations enhances both sensory responses in auditory cortex as well as engagement of prefrontal regions, as indexed during an auditory processing task with low demands on working memory. This neural circuit enhancement is in turn associated with better executive function but not verbal memory.
Assuntos
Córtex Auditivo/fisiopatologia , Transtornos Cognitivos/reabilitação , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Reabilitação Psiquiátrica/métodos , Esquizofrenia/reabilitação , Adulto , Córtex Auditivo/fisiologia , Estudos de Casos e Controles , Transtornos Cognitivos/fisiopatologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Memória de Curto Prazo , Pessoa de Meia-Idade , Córtex Pré-Frontal/fisiologia , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Terapia Assistida por Computador , Aprendizagem VerbalRESUMO
Understanding neural network dysfunction in neurodegenerative disease is imperative to effectively develop network-modulating therapies. In Alzheimer's disease (AD), cognitive decline associates with deficits in resting-state functional connectivity of diffuse brain networks. The goal of the current study was to test whether specific cognitive impairments in AD spectrum correlate with reduced functional connectivity of distinct brain regions. We recorded resting-state functional connectivity of alpha-band activity in 27 patients with AD spectrum--22 patients with probable AD (5 logopenic variant primary progressive aphasia, 7 posterior cortical atrophy, and 10 early-onset amnestic/dysexecutive AD) and 5 patients with mild cognitive impairment due to AD. We used magnetoencephalographic imaging (MEGI) to perform an unbiased search for regions where patterns of functional connectivity correlated with disease severity and cognitive performance. Functional connectivity measured the strength of coherence between a given region and the rest of the brain. Decreased neural connectivity of multiple brain regions including the right posterior perisylvian region and left middle frontal cortex correlated with a higher degree of disease severity. Deficits in executive control and episodic memory correlated with reduced functional connectivity of the left frontal cortex, whereas visuospatial impairments correlated with reduced functional connectivity of the left inferior parietal cortex. Our findings indicate that reductions in region-specific alpha-band resting-state functional connectivity are strongly correlated with, and might contribute to, specific cognitive deficits in AD spectrum. In the future, MEGI functional connectivity could be an important biomarker to map and follow defective networks in the early stages of AD.
Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Vias Neurais/fisiopatologia , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Processamento de Sinais Assistido por ComputadorRESUMO
The neural underpinnings of sensory processing differences in autism remain poorly understood. This prospective magnetoencephalography (MEG) study investigates whether children with autism show atypical cortical activity in the primary somatosensory cortex (S1) in comparison with matched controls. Tactile stimuli were clearly detectable, and painless taps were applied to the distal phalanx of the second (D2) and third (D3) fingers of the right and left hands. Three tactile paradigms were administered: an oddball paradigm (standard taps to D3 at an interstimulus interval (ISI) of 0.33 and deviant taps to D2 with ISI ranging from 1.32 s to 1.64 s); a slow-rate paradigm (D2) with an ISI matching the deviant taps in the oddball paradigm; and a fast-rate paradigm (D2) with an ISI matching the standard taps in the oddball. Study subjects were boys (age 7-11 years) with and without autism disorder. Sensory behavior was quantified using the Sensory Profile questionnaire. Boys with autism exhibited smaller amplitude left hemisphere S1 response to slow and deviant stimuli during the right-hand paradigms. In post-hoc analysis, tactile behavior directly correlated with the amplitude of cortical response. Consequently, the children were re-categorized by degree of parent-report tactile sensitivity. This regrouping created a more robust distinction between the groups with amplitude diminution in the left and right hemispheres and latency prolongation in the right hemisphere in the deviant and slow-rate paradigms for the affected children. This study suggests that children with autism have early differences in somatosensory processing, which likely influence later stages of cortical activity from integration to motor response.