Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Acc Chem Res ; 51(9): 2129-2138, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30129753

RESUMO

Comprising periodically repeating inorganic nodes and organic linkers, metal-organic frameworks (MOFs) represent a novel class of porous molecular solids with well-defined pores and channels. Over the past two decades, a large array of organic linkers have been combined with many inorganic nodes to afford a vast library of MOFs. The synthetic tunability of MOFs distinguishes them from traditional porous inorganic materials and has allowed the rational design of many interesting properties, such as porosity, chirality, and chemical functionality, for potential applications in diverse areas including gas storage and separation, catalysis, light harvesting, chiral separation, and chemical sensing. In particular, the molecular functionality and intrinsic porosity of MOFs have rendered them attractive candidates as porous single-site solid catalysts for a large number of organic transformations. MOF catalysts offer several advantages over their homogeneous counterparts, including enhanced stability, recyclability and reusability, and facile removal of the toxic catalyst components from the organic products. Additionally, the highly ordered nature of MOFs leads to the generation of single-site solid catalysts, allowing for precise characterization of the catalytic sites through X-ray diffraction, X-ray absorption, and other spectroscopic interrogations and facilitating the elucidation of reaction mechanisms. Thus, MOF catalysis represents a fertile research area that is expected to witness continued growth in the foreseeable future. In this Account, we present our recent research progress in developing ligand-supported single-site MOF catalysts for challenging organic reactions. We present two complementary approaches to the design of ligand-supported MOF catalysts: direct incorporation of prefunctionalized organic linkers into MOFs and postsynthetic functionalization of orthogonal secondary functional groups of the organic linkers in MOFs. Monophosphine-, bipyridine-, ß-diketimine-, and salicylaldimine-based ligands have been used to support both precious (Pd, Pt, Ir, Ru) and earth-abundant (Cu, Co, Fe) metals for a number of interesting catalytic reactions. The resulting MOF catalysts feature stable low-coordination species with minimum steric bulk around the active site-a feat that remains a challenge for homogeneous catalysts. For each ligand, we describe types of reactions catalyzed by the MOF in comparison with its homogeneous counterpart. In all cases, MOF catalysts outperformed their homogeneous counterparts in terms of catalyst stability, catalytic activity, and recyclability and reusability. Interestingly, several bipyridine- and salicylaldimine-ligated earth-abundant-metal-based MOF catalysts do not have homogeneous counterparts because the molecular compounds disproportionate or oligomerize to form inactive species in solution. This Account not only presents several interesting designs of ligand-supported single-site MOF catalysts but also provides illustrative examples of how site isolation in MOF catalysts shuts down deactivation pathways experienced by homogeneous systems. With precise knowledge of MOF structures and catalytically active sites, we envision the development of practically useful MOF catalysts comprising tailor-made building blocks that rationally optimize catalytic activities and selectivities.

2.
J Am Chem Soc ; 140(33): 10553-10561, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30045623

RESUMO

The Lewis acidity of metal-organic frameworks (MOFs) has attracted much research interest in recent years. We report here the development of two quantitative methods for determining the Lewis acidity of MOFs-based on electron paramagnetic resonance (EPR) spectroscopy of MOF-bound superoxide (O2•-) and fluorescence spectroscopy of MOF-bound N-methylacridone (NMA)-and a simple strategy that significantly enhances MOF Lewis acidity through ligand perfluorination. Two new perfluorinated MOFs, Zr6-fBDC and Zr6-fBPDC, where H2fBDC is 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid and H2fBPDC is 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldicarboxylic acid, were shown to be significantly more Lewis acidic than nonsubstituted UiO-66 and UiO-67 as well as the nitrated MOFs Zr6-BDC-NO2 and Zr6-BPDC-(NO2)2. Zr6-fBDC was shown to be a highly active single-site solid Lewis acid catalyst for Diels-Alder and arene C-H iodination reactions. Thus, this work establishes the important role of ligand perfluorination in enhancing MOF Lewis acidity and the potential of designing highly Lewis acidic MOFs for fine chemical synthesis.

3.
J Am Chem Soc ; 140(1): 433-440, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29211477

RESUMO

Titania (TiO2) is widely used in the chemical industry as an efficacious catalyst support, benefiting from its unique strong metal-support interaction. Many proposals have been made to rationalize this effect at the macroscopic level, yet the underlying molecular mechanism is not understood due to the presence of multiple catalytic species on the TiO2 surface. This challenge can be addressed with metal-organic frameworks (MOFs) featuring well-defined metal oxo/hydroxo clusters for supporting single-site catalysts. Herein we report that the Ti8(µ2-O)8(µ2-OH)4 node of the Ti-BDC MOF (MIL-125) provides a single-site model of the classical TiO2 support to enable CoII-hydride-catalyzed arene hydrogenation. The catalytic activity of the supported CoII-hydride is strongly dependent on the reduction of the Ti-oxo cluster, definitively proving the pivotal role of TiIII in the performance of the supported catalyst. This work thus provides a molecularly precise model of Ti-oxo clusters for understating the strong metal-support interaction of TiO2-supported heterogeneous catalysts.

4.
Chemistry ; 24(59): 15772-15776, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30016566

RESUMO

Metal-organic frameworks (MOFs) have emerged as promising single-site solid catalysts for organic reactions. However, MOF catalysts suffer from pore size limitation and slow diffusion, which are detrimental for photoreactions. Metal-organic layers (MOLs) have unique ultrathin 2D monolayer structures and overcome pore size and diffusion limitations. Here, the synthesis of photoactive Zr-RuBPY MOL based on Zr-oxo clusters and [Ru(bpy)3 ]2+ -containing linkers is reported as well as its application in photocatalytic [2+2] cyclizations of enones and Meerwein addition reactions between aryl diazonium salts, styrenes, and nitriles.

5.
J Chem Phys ; 131(20): 204301, 2009 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19947674

RESUMO

Fourier transform microwave rotation spectra in the 7-21 GHz region are obtained for the complex formed between 1,1-difluoroethylene and hydrogen fluoride, including the normal isotopomer and two singly substituted (13)C species obtained in natural abundance. Spectra are also obtained for the analogous three species formed using deuterium fluoride. Analysis of the spectra provides rotational and hyperfine constants that are used, in combination with information from the analogous complex, 1,1-difluoroethylene-acetylene, to determine a structure for CH(2)CF(2)-HF. This structure is similar to that obtained for vinyl fluoride-HF [G. C. Cole and A. C. Legon, Chem. Phys. Lett. 400, 419 (2004)] in that a primary, hydrogen bonding interaction exists between the HF donor and a F atom acceptor on the 1,1-difluoroethylene moiety, while a secondary interaction occurs between the F atom on the HF molecule and the H atom cis to the hydrogen-bonded F atom on the substituted ethylene and causes the hydrogen bond to deviate from linearity. A comparison of the structures of 1,1-difluoroethylene complexes with the protic acids HF, HCl, and HCCH demonstrates that the hydrogen bond length increases with decreasing gas-phase acid strength, whereas a comparison of HF complexes with vinyl fluoride, 1,1-difluoroethylene, and 1,1,2-trifluoroethylene indicates that the nucleophilicity of the F atoms decreases with increasing fluorine substitution, but that the secondary interaction length is remarkably similar in all three complexes.

6.
Chem Sci ; 9(1): 143-151, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29629082

RESUMO

We report the synthesis of a terpyridine-based metal-organic layer (TPY-MOL) and its metalation with CoCl2 and FeBr2 to afford CoCl2·TPY-MOL and FeBr2·TPY-MOL, respectively. Upon activation with NaEt3BH, CoCl2·TPY-MOL catalyzed benzylic C-H borylation of methylarenes whereas FeBr2·TPY-MOL catalyzed intramolecular Csp3 -H amination of alkyl azides to afford pyrrolidines and piperidines. X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy, UV-Vis-NIR spectroscopy, and electron paramagnetic spectroscopy (EPR) measurements as well as density functional theory (DFT) calculations identified M(THF)2·TPY-MOL (M = Co or Fe) as the active catalyst with a MII-(TPY˙˙)2- electronic structure featuring divalent metals and TPY diradical dianions. We believe that site isolation stabilizes novel MII-(TPY˙˙)2- (M = Co or Fe) species in the MOLs to endow them with unique and enhanced catalytic activities for Csp3 -H borylation and intramolecular amination over their homogeneous counterparts. The MOL catalysts are also superior to their metal-organic framework analogs owing to the removal of diffusion barriers. Our work highlights the potential of MOLs as a novel 2D molecular material platform for designing single-site solid catalysts without diffusional constraints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA