Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nature ; 626(7999): 505-511, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356069

RESUMO

Non-Abelian topological order is a coveted state of matter with remarkable properties, including quasiparticles that can remember the sequence in which they are exchanged1-4. These anyonic excitations are promising building blocks of fault-tolerant quantum computers5,6. However, despite extensive efforts, non-Abelian topological order and its excitations have remained elusive, unlike the simpler quasiparticles or defects in Abelian topological order. Here we present the realization of non-Abelian topological order in the wavefunction prepared in a quantum processor and demonstrate control of its anyons. Using an adaptive circuit on Quantinuum's H2 trapped-ion quantum processor, we create the ground-state wavefunction of D4 topological order on a kagome lattice of 27 qubits, with fidelity per site exceeding 98.4 per cent. By creating and moving anyons along Borromean rings in spacetime, anyon interferometry detects an intrinsically non-Abelian braiding process. Furthermore, tunnelling non-Abelions around a torus creates all 22 ground states, as well as an excited state with a single anyon-a peculiar feature of non-Abelian topological order. This work illustrates the counterintuitive nature of non-Abelions and enables their study in quantum devices.

2.
Phys Rev Lett ; 130(23): 230401, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354425

RESUMO

We consider Gaussian quantum circuits that alternate unitary gates and postselected weak measurements, with spatial translation symmetry and time p eriodicity. We show analytically that such models can host different kinds of measurement-induced phase transitions detected by entanglement entropy, by mapping the unitary gates and weak measurements onto Möbius transformations. We demonstrate the existence of a log-law to area-law transition, as well as a volume-law to area-law transition at a finite measurement amplitude. For the latter, we compute the critical exponent ν for the Hartley, von Neumann and Rényi entropies exactly.


Assuntos
Entropia , Distribuição Normal , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA