Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Environ Sci (China) ; 57: 1-7, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28647228

RESUMO

A model is developed to enable estimation of chloramine demand in full scale drinking water supplies based on chemical and microbiological factors that affect chloramine decay rate via nonlinear regression analysis method. The model is based on organic character (specific ultraviolet absorbance (SUVA)) of the water samples and a laboratory measure of the microbiological (Fm) decay of chloramine. The applicability of the model for estimation of chloramine residual (and hence chloramine demand) was tested on several waters from different water treatment plants in Australia through statistical test analysis between the experimental and predicted data. Results showed that the model was able to simulate and estimate chloramine demand at various times in real drinking water systems. To elucidate the loss of chloramine over the wide variation of water quality used in this study, the model incorporates both the fast and slow chloramine decay pathways. The significance of estimated fast and slow decay rate constants as the kinetic parameters of the model for three water sources in Australia was discussed. It was found that with the same water source, the kinetic parameters remain the same. This modelling approach has the potential to be used by water treatment operators as a decision support tool in order to manage chloramine disinfection.


Assuntos
Cloraminas/química , Modelos Químicos , Austrália , Água Potável/química , Cinética , Purificação da Água/métodos , Abastecimento de Água
2.
J Environ Sci (China) ; 57: 170-179, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28647237

RESUMO

The management of chloramine decay and the prevention of nitrification are some of the critical issues faced by water utilities that use chloramine as a disinfectant. In this study, potential association between high performance size exclusion chromatography (HPSEC) data obtained with multiple wavelength Ultraviolet (UV) detection from two drinking water distribution systems in Australia and nitrification occurrence was investigated. An increase in the absorbance signal of HPSEC profiles with UV detection at λ=230nm between apparent molecular weights of 200 to 1000Da was observed at sampling sites that experienced rapid chloramine decay and nitrification while its absorbance signal at λ=254nm decreased. A chloramine decay index (C.D.I) defined as the ratio of area beneath the HPSEC spectra at two different wavelengths of 230 and 254nm, was used in assessing chloramine decay occurrences. The C.D.Is of waters at locations that experienced nitrification were consistently higher than locations not experiencing nitrification. A simulated laboratory study showed that the formation of nitrite/nitrate and/or soluble microbial products and/or the release of extracellular polymeric substances (EPS) during nitrification may contribute to the C.D.I. increase. These findings suggest that C.D.I derived from HPSEC with multiple wavelength UV detection could be an informative index to track the occurrence of rapid chloramine decay and nitrification.


Assuntos
Cloraminas/química , Desinfetantes/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Amônia , Austrália , Água Potável , Nitrificação , Nitritos , Abastecimento de Água
3.
J Environ Sci (China) ; 57: 338-345, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28647255

RESUMO

Minimizing particles in water is a key goal for improving drinking water quality and safety. The media filtration process, as the last step of the solid-liquid separation process, is largely influenced by the characteristics of flocs, which are formed and controlled within the coagulation process. In a laboratory-based study, the impacts of the physical characteristics of flocs formed using aluminum sulfate on the filtration treatment of two comparative water samples were investigated using a photometric dispersion analyzer and a filterability apparatus. In general, the optimum dosage for maximizing filterability was higher than that for minimizing turbidity under neutral pH conditions. For a monomeric aluminum-based coagulant, the charge neutralization mechanism produced better floc characteristics, including floc growth speed and size, than the sweep flocculation mechanism. In addition, the charge neutralization mechanism showed better performance compared to sweep flocculation in terms of DOC removal and floc filterability improvement for both waters, and showed superiority in turbidity removal only when the raw water had high turbidity. For the different mechanisms, the ways that floc characteristics impacted on floc filterability also differed. The low variation in floc size distribution obtained under the charge neutralization mechanism resulted in the flocs being amenable to removal by filtration processes. For the sweep flocculation mechanism, increasing the floc size improved the settling ability of flocs, resulting in higher filter efficiency.


Assuntos
Filtração/métodos , Floculação , Eliminação de Resíduos Líquidos/métodos , Modelos Químicos
4.
J Water Health ; 14(2): 183-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27105403

RESUMO

Research is increasingly indicating the potential chronic health effects of brominated disinfection by-products (DBPs). This is likely to increase with elevated bromide concentrations resulting from the impacts of climate change, projected to include extended periods of drought and the sudden onset of water quality changes. This will demand more rigorous monitoring throughout distribution systems and improved water quality management at water treatment plants (WTPs). In this work the impact of increased bromide concentration on formation of DBPs following conventional treatment and chlorination was assessed for two water sources. Bioanalytical tests were utilised to determine cytotoxicity of the water post disinfection. Coagulation was shown to significantly reduce the cytotoxicity of the water, indicating that removal of natural organic matter DBP precursors continues to be an important factor in drinking water treatment. Most toxic species appear to form within the first half hour following disinfectant addition. Increasing bromide concentration across the two waters was shown to increase the formation of trihalomethanes and shifted the haloacetic acid species distribution from chlorinated to those with greater bromine substitution. This correlated with increasing cytotoxicity. This work demonstrates the challenges faced by WTPs and the possible effects increasing levels of bromide in source waters could have on public health.


Assuntos
Brometos/toxicidade , Desinfecção/métodos , Água Potável/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Qualidade da Água , Halogenação , Humanos , Leucócitos/efeitos dos fármacos , Austrália do Sul , Trialometanos/análise , Austrália Ocidental
5.
J Environ Sci (China) ; 44: 235-243, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27266320

RESUMO

This study examined the associations between dissolved organic matter (DOM) characteristics and potential nitrification occurrence in the presence of chloramine along a drinking water distribution system. High-performance size exclusion chromatography (HPSEC) coupled with a multiple wavelength detector (200-280nm) was employed to characterise DOM by molecular weight distribution, bacterial activity was analysed using flow cytometry, and a package of simple analytical tools, such as dissolved organic carbon, absorbance at 254nm, nitrate, nitrite, ammonia and total disinfectant residual were also applied and their applicability to indicate water quality changes in distribution systems were also evaluated. Results showed that multi-wavelength HPSEC analysis was useful to provide information about DOM character while changes in molecule weight profiles at wavelengths less than 230nm were also able to be related to other water quality parameters. Correct selection of the UV wavelengths can be an important factor for providing appropriate indicators associated with different DOM compositions. DOM molecular weight in the range of 0.2-0.5kDa measured at 210nm correlated positively with oxidised nitrogen concentration (r=0.99), and the concentrations of active bacterial cells in the distribution system (r=0.85). Our study also showed that the changes of DOM character and bacterial cells were significant in those sampling points that had decreases in total disinfectant residual. HPSEC-UV measured at 210nm and flow cytometry can detect the changes of low molecular weight of DOM and bacterial levels, respectively, when nitrification occurred within the chloraminated distribution system.


Assuntos
Monitoramento Ambiental/instrumentação , Substâncias Húmicas/análise , Poluentes da Água/análise , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental/métodos , Peso Molecular
6.
Appl Environ Microbiol ; 81(18): 6463-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162884

RESUMO

Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs.


Assuntos
Bactérias/genética , Água Potável/microbiologia , Microbiota , Análise de Sequência de DNA/métodos , Microbiologia da Água , Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Cloraminas , Desinfecção/métodos , Desinfecção/normas , Genes de RNAr , Metagenoma , Interações Microbianas , Nitrificação , RNA Ribossômico 16S/genética , Microbiologia da Água/normas , Purificação da Água/normas , Qualidade da Água
7.
J Environ Sci (China) ; 26(10): 1985-93, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25288541

RESUMO

The treatment of organics present in the lower reaches of a major river system (the Murray-Darling Basin, Australia) before (March-July 2010), during (December 2010-May 2011) and after (April-December 2012) a major flood period was investigated. The flood period (over 6months) occurred during an intense La Niña cycle, leading to rapid and high increases in river flows and organic loads in the river water. Dissolved organic carbon (DOC) increased (2-3 times) to high concentrations (up to 16mg/L) and was found to correlate with river flow rates. The treatability of organics was studied using conventional jar tests with alum and an enhanced coagulation model (mEnCo©). Predicted mean alum dose rates (per mg DOC) were higher before (9.1mg alum/mg DOC) and after (8.5mg alum/mg DOC) than during the flood event (8.0mg alum/mg DOC), indicating differences in the character of the organics in raw waters. To assess the character of natural organic matter present in raw and treated waters, high performance size exclusion chromatography with UV and fluorescence detectors were used. During the flood period, high molecular weight UV absorbing compounds (>2kDa) were mostly detected in waters collected, but were not evident in waters collected before and afterwards. The relative abundances of humic-like and protein-like compounds during and following the flood period were also investigated and found to be of a higher molecular weight during the flood period. The treatability of the organics was found to vary over the three climate conditions investigated.


Assuntos
Clima , Água Potável , Inundações , Carbono/análise , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Peso Molecular , Rios , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
8.
Water Sci Technol ; 66(11): 2402-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23032771

RESUMO

Resin fractionation is the most widely used technique to isolate and characterize natural organic matter (NOM) based on its hydrophobicity and hydrophilicity, however, it is also recognized as a time consuming technique. This paper describes the use of reverse phase high performance liquid chromatography (RPHPLC) as a rapid assessment technique to determine the hydrophobicity/hydrophilicity of NOM. The optimum column separation condition was achieved and without the need for concentrating the sample prior to analysis and with good reproducibility of the peak retention time and the peak area. The characterization results were further compared with the traditional resin fractionation technique using DAX-8 and XAD-4 resins. The results demonstrated that the polarities defined by the two methods were different but consistent and also that the fractions absorbed onto XAD-4 were less hydrophobic than those absorbed onto DAX-8. The difference in definition between resin fractionation and RPHPLC were further investigated.


Assuntos
Substâncias Húmicas/análise , Cromatografia Líquida de Alta Pressão , Interações Hidrofóbicas e Hidrofílicas , Água/análise
9.
J Environ Sci (China) ; 24(7): 1174-80, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23513436

RESUMO

High performance size exclusion chromatography (HPSEC) is used in water quality research primarily to determine the molecular weight distribution of the dissolved organic matter (DOM), but by applying peak fitting to the chromatogram, this technique can also be used as a tool to model and predict DOM removal. Six low specific UV absorbance (SUVA) source waters were treated using coagulation with alum and both the source and treated water samples were analysed using HPSEC. By comparing the molecular weight profiles of the source and treated waters, it was established that several DOM components were not effectively removed by alum coagulation even after high dosage alum treatment. A peak-fitting technique was applied based on the concept of linking the character (molecular weight profile) of the recalcitrant organics in the treated water with those of the source water. This was then applied to predict DOM treatability by determining the areas of the peaks which were assigned to removable organics from the source water molecular weight profile after peak fitting, and this technique quantified the removable and non-removable organics. The prediction was compared with the actual dissolved organic carbon (DOC) removal determined from jar testing and showed good agreement, with variance between 2% and 10%. This confirmed that this prediction approach, which was originally developed for high SUVA waters, can also be applied successfully to predict DOC removal in low SUVA waters.


Assuntos
Cromatografia em Gel , Modelos Químicos , Compostos Orgânicos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Algoritmos , Espectrofotometria Ultravioleta
10.
Water Sci Technol ; 64(1): 171-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22053472

RESUMO

The character of dissolved organic matter (DOM) in source waters from two countries (Australia and China) was investigated using an extended fractionation technique by combining resin adsorption, ultrafiltration and high performance size exclusion chromatography. There are distinctive chemical characteristics associated with DOM origins. Australian sourced DOM had higher hydrophobic acid (HoA) content and exhibited a more pronounced humic character, indicating a higher influence from allochthonous organics (decayed plant bodies from vegetated catchments). The higher content of hydrophobic base and neutral components found in Chinese DOM, may be attributed to the effects of increasing pollution caused by the rapid urbanization in China. The molecular weights (MWs) of aquatic HoA are predominantly in the moderate (e.g., 1-10 kDa) or small (e.g., < 1 kDa) ranges. This suggests that aquatic HOA should not be assumed as high MW organics without experimental validation. It is also found that some of the low MW compounds in our samples were hydrophobic, which could explain the observation of low MW organic compounds being able to be removed by conventional treatment processes.


Assuntos
Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Adsorção , Austrália , Fracionamento Químico , China , Cromatografia em Gel , Compostos Orgânicos/química , Ultrafiltração , Qualidade da Água
11.
J Environ Sci (China) ; 23(3): 381-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21520806

RESUMO

The contamination of surface and ground water by bentazone has attracted increasing global concern in recent years. We conducted a detailed investigation using MIEX resin to eliminate bentazone from waters. Batch experiments were carried out to evaluate the effect of process parameters, such as retention time, resin amount, and initial pesticide concentration, on removal efficiency of bentazone. Results showed the sorption process was fast and bentazone could be efficiently removed in 30 minutes. The kinetic process of bentazone sorption on MIEX resin was well described by pseudo second-order model and intraparticle diffusion was the rate controlling step. The MIEX resin possessed the highest sorption capacity of 0.2656 mmol/mL for bentazone according to Langmuir fitting. Bentazone is a hydrophobic ionizable organic compound, and both ionic charge and hydrophobic aromatic structure governed the sorption characteristics on MIEX resin. The different removal efficiencies of ionic and non-ionic pesticides, combined with the charge balance equations of bentazone, SO4(2-), NO3- and Cl-, indicated that removal of bentazone using MIEX resin occurred primarily via ion exchange.


Assuntos
Benzotiadiazinas/química , Herbicidas/química , Resinas de Troca Iônica/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Abastecimento de Água/análise , Adsorção , Humanos , Estrutura Molecular
12.
Water Res ; 43(6): 1541-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19131089

RESUMO

Absorbance spectra of fractions of natural organic matter (NOM) with varying apparent molecular weights (AMWs) were examined in this study. Size exclusion chromatography (SEC) was employed to obtain AMW distributions for three Australian water sources which represented low- and high-dissolved organic carbon (DOC) surface waters and a source with highly degraded NOM. These waters were coagulated with alum and other coagulants. Effects of coagulation on AMW distributions were quantified based on an absorbance slope index (ASI) calculated using NOM absorbance measured at 220, 230, 254 and 272 nm. This index can be calculated for any AMW fraction of NOM. Similarly to SUVA(254), ASI values decrease consistently in coagulated waters and are correlated with trihalomethane yields. Comparison of ASI indexes in different water sources indicates the presence of both common trends and differences indicative of NOM site-specificity.


Assuntos
Compostos Orgânicos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Abastecimento de Água/normas , Austrália , Cromatografia em Gel , Peso Molecular , Compostos Orgânicos/análise , Compostos Orgânicos/isolamento & purificação , Soluções , Espectrofotometria Ultravioleta , Poluentes Químicos da Água/química
13.
Water Res ; 42(15): 4188-96, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18706670

RESUMO

Observations from many countries around the world during the past 10-20 years indicate increasing natural organic matter (NOM) concentration levels in water sources, due to issues such as global warming, changes in soil acidification, increased drought severity and more intensive rain events. In addition to the trend towards increasing NOM concentration, the character of NOM can vary with source and time (season). The great seasonal variability and the trend towards elevated NOM concentration levels impose challenges to the water industry and the water treatment facilities in terms of operational optimisation and proper process control. The aim of this investigation was to compare selected raw and conventionally treated drinking water sources from different hemispheres with regard to NOM character which may lead to better understanding of the impact of source water on water treatment. Results from the analyses of selected Norwegian and Australian water samples showed that Norwegian NOM exhibited greater humic nature, indicating a stronger bias of allochthonous versus autochthonous organic origin. Similarly, Norwegian source waters had higher average molecular weights than Australian waters. Following coagulation treatment, the organic character of the recalcitrant NOM in both countries was similar. Differences in organic character of these source waters after treatment were found to be related to treatment practice rather than origin of the source water. The characterisation techniques employed also enabled identification of the coagulation processes which were not necessarily optimised for dissolved organic carbon (DOC) removal. The reactivity with chlorine as well as trihalomethane formation potential (THMFP) of the treated waters showed differences in behaviour between Norwegian and Australian sources that appeared to be related to residual higher molecular weight organic material. By evaluation of changes in specific molecular weight regions and disinfection parameters before and after treatment, correlations were found that relate treatment strategy to chlorine demand and DBP formation.


Assuntos
Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Austrália , Desinfetantes/química , Noruega , Compostos Orgânicos/química , Poluentes Químicos da Água/química , Abastecimento de Água/normas
14.
Chemosphere ; 72(2): 263-71, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18336863

RESUMO

The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV(254) absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV(254) absorbance. The THMFPs of samples were decreased to below 20 microg l(-1) after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.


Assuntos
Fracionamento Químico/métodos , Substâncias Húmicas , Titânio/química , Catálise/efeitos da radiação , Cromatografia em Gel , Peso Molecular , Espectrofotometria Ultravioleta , Raios Ultravioleta
15.
Food Waterborne Parasitol ; 8-9: 64-74, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32095641

RESUMO

The safety of drinking water in Australia is ensured using a risk management framework embedded within the Australian Drinking Water Guidelines (ADWG). This framework includes elements for hazard identification, risk assessment, risk mitigation, verification of barrier performance and monitoring for any changes to the hazards that influence source water quality. The next revision of the ADWG will incorporate Health-Based Targets (HBTs) for achieving microbiologically safe drinking water. This incorporates Quantitative Microbial Risk Assessment and the metric of Disability Adjusted Life Year (DALY) to define safety, with a target of 1 × 10- 6 Disability Adjusted Life Year (1 microDALY) set as the maximum tolerable disease burden from drinking water, which in the case of Cryptosporidium is < 1.3 × 10- 5 oocysts/L. The resulting product water specification, in combination with knowledge of pathogen challenges in source waters, allows the determination of the treatment requirements to ensure public safety. The ADWG revision provides default removal values for Cryptosporidium for particular treatment processes, such as conventional coagulation and dual media filtration. However, these values are based on assumptions regarding treatment plant design, operation and water quality. To properly manage risk and demonstrate compliance with the guidelines, water utilities may need to validate treatment performance for Cryptosporidium removal. A particular limitation is the absence of Cryptosporidium surrogates for full-scale filter validation. This paper will provide an overview of risk-based management of drinking water safety in Australia, the development of health-based targets for microbial pathogens and the evaluation of Cryptosporidium surrogates for conventional coagulation and dual media filtration.

16.
Water Res ; 102: 229-240, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27348195

RESUMO

Water quality remains one of the greatest concerns with regards to human health. Advances in science and technology have resulted in highly efficient water treatment plants, significantly reducing diseases related to waterborne pathogenic microorganisms. While disinfection is critical to mitigate pathogen risk to humans, the reactions between the disinfectant and dissolved organic compounds can lead to the formation of chemical contaminants called disinfection by-products (DBPs). DBPs have been related to numerous health issues including birth defects and cancer. The formation of disinfection by-products occurs due to the reaction of oxidants and natural organic matter. DBP precursors are derived from anthropogenic sources including pharmaceuticals and chemical waste, the breakdown of vegetation from external catchment sources (allochthonous) and internally derived sources including phytoplankton (autochthonous). Current literature focuses on the contribution of allochthonous sources towards the formation of DBPs, however, the recalcitrant nature of hydrophilic phytoplankton derived organic matter indicates that autochthonous derived organic carbon can significantly contribute to total DBP concentrations. The contribution of phytoplankton to the formation of DBPs is also influenced by cellular exudation rates, chemical composition, environmental conditions and the physical and chemical conditions of the solution upon disinfection. Formation of DBPs is further influenced by the presence of cyanobacteria phyla due to their notoriety for forming dense blooms. Management of DBP formation can potentially be improved by reducing cyanobacteria as well as DBP precursors derived from other phytoplankton.


Assuntos
Desinfecção , Halogenação , Desinfetantes/química , Fitoplâncton , Poluentes Químicos da Água/química , Purificação da Água
17.
Water Res ; 88: 904-911, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26614969

RESUMO

Ammonia degradation was investigated in three batch reactors with differing initial concentrations of bacteria present in the same filtered water source based on pre-treatment filtration techniques. The potential for the bacterial community to degrade the ammonia present was determined in the absence of monochloramine, simulating a distribution system where a loss of disinfectant residual has occurred. Nitrification was observed in only one of the three batch reactors, whereas rapid microbiologically induced chloramine decay was present in two reactors. Results suggest that the microbial decay factor is not a valid tool for indication of nitrification, but may be used as an indicator of the occurrence of rapid monochloramine decay. Intact bacterial cell numbers did not to correlate with changes in ammonia, nitrite or nitrate concentrations and hence did not correlate with the nitrification observed. Neither use of the microbial decay factor or monitoring of ammonia oxidising prokaryotes provided an early indication for the occurrence of nitrification. Hence, monitoring of ammonia and nitrite would still be the most suitable tool for indicating nitrification.


Assuntos
Bactérias/metabolismo , Cloraminas/metabolismo , Desinfecção , Nitrificação , Purificação da Água , Amônia/metabolismo , Biodegradação Ambiental
18.
Chemosphere ; 144: 1193-200, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26461444

RESUMO

The treatability of NOM present in runoff and subsurface waters from discrete zero-order catchments (ZOCs) with three land management practices (Australian native vegetation, pine plantation, grasslands) on varying soil textures of a closed drinking water reservoir-catchment was investigated. Subsurface water samples were collected by lysimeters and shallow piezometers and surface waters by installation of barriers that diverted waters to collection devices. For small sample volumes collected, a 'micro' jar testing procedure was developed to assess the treatability of organics by enhanced coagulation using alum, under standardised conditions. DOM present in water samples was quantified by measurement of DOC and UV absorbance (at 254 nm) and characterized using these and F-EEM. The mean alum dose rate (mg alum per mg DOC removed or Al/DOC) was found to be lower for DOM from sandy soil ZOCs (21.1 ± 11.0 Al/DOC) than from clayey soil ZOCs (38.6 ± 27.7 Al/DOC). ZOCs with Pinus radiata had prominent litter layers (6.3 ± 2.6 cm), and despite differences in soil textures showed similarity in DOM character in subsurface waters, and in alum dose rates (22.2 ± 5.5 Al/DOC). For sandy soil ZOCs, the lowest alum dose rates (16.5 ± 10.6 Al/DOC) were for waters from native vegetation catchment while, for clayey soil ZOCs, waters from pine vegetation had the lowest alum dose rates (23.0 ± 5.0 Al/DOC). Where ZOCs have a prominent O horizon, soil minerals had no apparent influence on the treatability of DOM.


Assuntos
Água Potável/normas , Água Doce/química , Água Subterrânea/química , Substâncias Húmicas/análise , Solo/química , Recursos Hídricos , Compostos de Alúmen/química , Austrália
19.
Chemosphere ; 150: 211-218, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26901478

RESUMO

In full scale water treatment operation, the rapid filtration process, as the last step of solid-liquid separation, is largely influenced by floc characteristics. In this study, aluminium sulphate (alum) and nano-Al13 were investigated to understand the influence of coagulant species on the formation and filterability of flocs. At neutral pH, it was found that nano-Al13, a high MW polymer, showed better floc filterability than alum. This is because of the densely compacted and well-distributed size flocs from nano-Al13, even though floc sizes of alum were generally bigger. Al specie distributions of the two coagulants at different pH levels were compared by using electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) to further elucidate the reasons for the superiority of nano-Al13 in floc filterability. Depolymerisation/re-polymerisation of nano-Al13 occurred as pH changed, and Al species from nano-Al13were more abundant than that from alum, especially for the high molecular weight (MW) oligomers such as Al11, Al12, Al13 and Al14. Under the charge neutralisation mechanism, higher MW Al species was found to improve coagulation performance and floc filterability. In addition, breakage resistance and regrowth ability of nano-Al13 was better than alum, at weak acid condition. Flocs formed by the charge neutralisation mechanism readily regenerated after being thoroughly broken up. The floc regrowth ability of nano-Al13 at high shear rates (200 rpm and 300 rpm) was much better than at low shear and better than any shear applied to alum., and the flocs after breakage at 200 rpm and 300 rpm also showed better filterability than other conditions.


Assuntos
Compostos de Alúmen/química , Hidróxido de Alumínio/química , Filtração/métodos , Floculação , Nanopartículas/química , Purificação da Água/métodos , Austrália , Concentração de Íons de Hidrogênio
20.
J Hazard Mater ; 308: 430-9, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-26874432

RESUMO

Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character dependent on their sources within catchments. The character of DOM further influences the formation of disinfection by products when precursor DOM present in drinking water reacts with chlorine during disinfection. Here we report the development of models that describe the formation potential of trihalomethanes (THMFP) dependent on the character of DOM in waters from discrete catchments with specific land-use and soil textures. DOM was characterized based on UV absorbance at 254 nm, apparent molecular weight and relative abundances of protein-like and humic-like compounds. DOM character and Br concentration (up to 0.5 mg/L) were used as variables in models (R(2)>0.93) of THMFP, which ranged from 19 to 649 µg/L. Chloroform concentration (12-594 µg/L) and relative abundance (27-99%) were first modeled (R(2)>0.85) and from these, the abundances of bromodichloromethane and chlorodibromomethane estimated using power and exponential functions, respectively (R(2)>0.98). From these, the abundance of bromoform is calculated. The proposed model may be used in risk assessment of catchment factors on formation of trihalomethanes in drinking water, in context of treatment efficiency for removal of organic matter.


Assuntos
Água Doce/química , Modelos Teóricos , Trialometanos/química , Poluentes Químicos da Água/química , Benzopiranos , Água Potável/química , Substâncias Húmicas , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA