Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Biometeorol ; 66(8): 1561-1573, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35522348

RESUMO

Ecosystem carbon balance might be affected by the variability of seasonal distribution of precipitation under global climate change. Using the eddy covariance (EC) technique, long-term observations of ecosystem net CO2 exchange (NEE) were acquired over Lijiang alpine meadow in the southeastern Tibetan Plateau from January 2014 to August 2019. During the wet season (from June to October), Lijiang meadow functioned as a carbon sink (- 37.6 ± 22.5 g C m-2 month-1), while in dry season, the meadow varied between a weak carbon source and sink with an average monthly NEE of - 3.9 ± 11.9 g C m-2 month-1. Monthly CO2 fluxes were mainly controlled by air temperature and soil water content. A large annual variation of CO2 uptake was observed. The annual NEE was - 140.3 g C m-2 year-1 in 2014 while - 247.0 g C m-2 year-1 in 2016. Correspondingly, the precipitation in wet season accounted 90% of annual precipitation in 2014 and 74% of that in 2016 despite the annual precipitation was larger than 1200 mm in both years. More precipitation in dry season can lead to longer period of net CO2 uptake, while more precipitation concentrated in wet season depressed the meadow's light response through the decrease of the magnitude of light-saturated net CO2 exchange (NEEsat) at the onset and the end of growing season.


Assuntos
Dióxido de Carbono , Ecossistema , Carbono , Dióxido de Carbono/análise , Pradaria , Estações do Ano , Tibet
2.
J Integr Neurosci ; 20(2): 255-264, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34258924

RESUMO

The abnormal deposition of the extracellular amyloid-ß peptide is the typical pathological hallmark of Alzheimer's disease. Strategies to reduce the amyloid-ß deposition effectively alleviate the neuronal degeneration and cognitive deficits of Alzheimer's disease. Danggui-Shaoyao-San has been considered a useful therapeutic agent known for the treatment of Alzheimer's disease. However, the mechanism of Danggui-Shaoyao-San for the treatment of Alzheimer's disease remains unclear. We investigated Danggui-Shaoyao-San's effect on amyloidosis and neuronal degeneration in an APP/PS1 mouse model. We found Danggui-Shaoyao-San alleviated the cognitive deficits in APP/PS1 mice. Additionally, Danggui-Shaoyao-San ameliorated the neuronal degeneration in these mice. Danggui-Shaoyao-San reduced the amyloidosis and amyloid-ß1-42 deposition in APP/PS1 mouse brain and down-regulated the receptor for advanced glycation end products, and up-regulated the level of low-density lipoprotein receptor-related protein-1. However, the protein expression of the ß-amyloid precursor protein, ß-Secretase and presenilin-1 (PS1) in the amyloid-ß production pathway, and the expression of neprilysin and insulin-degrading enzyme in the amyloid-ß degradation pathway were not altered. Our findings collectively suggest that Danggui-Shaoyao-San could ameliorate the amyloidosis and neuronal degeneration of Alzheimer's disease, which may be associated with its up-regulation lipoprotein receptor-related protein-1 and down-regulation of the receptor for advanced glycation end products.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amiloidose/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Regulação para Cima/efeitos dos fármacos
3.
PLoS Comput Biol ; 15(5): e1006980, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31042706

RESUMO

Antibodies are an important class of therapeutics that have significant clinical impact for the treatment of severe diseases. Computational tools to support antibody drug discovery have been developing at an increasing rate over the last decade and typically rely upon a predetermined co-crystal structure of the antibody bound to the antigen for structural predictions. Here, we show an example of successful in silico affinity maturation of a hybridoma derived antibody, AB1, using just a homology model of the antibody fragment variable region and a protein-protein docking model of the AB1 antibody bound to the antigen, murine CCL20 (muCCL20). In silico affinity maturation, together with alanine scanning, has allowed us to fine-tune the protein-protein docking model to subsequently enable the identification of two single-point mutations that increase the affinity of AB1 for muCCL20. To our knowledge, this is one of the first examples of the use of homology modelling and protein docking for affinity maturation and represents an approach that can be widely deployed.


Assuntos
Afinidade de Anticorpos/fisiologia , Biologia Computacional/métodos , Sequência de Aminoácidos , Animais , Anticorpos/química , Quimiocina CCL20 , Simulação por Computador , Desenho de Fármacos , Região Variável de Imunoglobulina , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
4.
Mediators Inflamm ; 2020: 8704146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192176

RESUMO

Isoorientin has anti-inflammatory effects; however, the mechanism remains unclear. We previously found isoorientin is an inhibitor of glycogen synthase kinase 3ß (GSK3ß) in vitro. Overactivation of GSK3ß is associated with inflammatory responses. GSK3ß is inactivated by phosphorylation at Ser9 (i.e., p-GSK3ß). Lithium chloride (LiCl) inhibits GSK3ß and also increases p-GSK3ß (Ser9). The present study investigated the anti-inflammatory effect and mechanism of isoorientin via GSK3ß regulation in lipopolysaccharide- (LPS-) induced RAW264.7 murine macrophage-like cells and endotoxemia mice. LiCl was used as a control. While AKT phosphorylates GSK3ß, MK-2206, a selective AKT inhibitor, was used to activate GSK3ß via AKT inhibition (i.e., not phosphorylate GSK3ß at Ser9). The proinflammatory cytokines TNF-α, IL-6, and IL-1ß were detected by ELISA or quantitative real-time PCR, while COX-2 by Western blotting. The p-GSK3ß and GSK3ß downstream signal molecules, including NF-κB, ERK, Nrf2, and HO-1, as well as the tight junction proteins ZO-1 and occludin were measured by Western blotting. The results showed that isoorientin decreased the production of TNF-α, IL-6, and IL-1ß and increased the expression of p-GSK3ß in vitro and in vivo, similar to LiCl. Coadministration of isoorientin and LiCl showed antagonistic effects. Isoorientin decreased the expression of COX-2, inhibited the activation of ERK and NF-κB, and increased the activation of Nrf2/HO-1 in LPS-induced RAW264.7 cells. Isoorientin increased the expressions of occludin and ZO-1 in the brain of endotoxemia mice. In summary, isoorientin can inhibit GSK3ß by increasing p-GSK3ß and regulate the downstream signal molecules to inhibit inflammation and protect the integrity of the blood-brain barrier and the homeostasis in the brain.


Assuntos
Endotoxemia/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/genética , Inflamação/tratamento farmacológico , Luteolina/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Endotoxemia/metabolismo , Ensaio de Imunoadsorção Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Heme Oxigenase-1/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Interleucina-6/metabolismo , Cloreto de Lítio/farmacologia , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Ocludina/biossíntese , Fosforilação , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real , Proteína da Zônula de Oclusão-1/metabolismo
5.
Int J Mol Sci ; 20(5)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832202

RESUMO

Colitis-associated cancer (CAC) is a malignant disease of the colon that is caused by recurrent episodes of chronic intestinal inflammation. Huangqi Baizhu decoction (HBD) is a classic prescription comprised of Radix Astragali and Rhizoma Atractylodis, which are usually used to treat digestive conditions, such as peptic ulcers, colitis, or colorectal carcinoma in clinics. HBD is well known for "tonifying qi and spleen" based on the theories of traditional Chinese medicine, and has the preponderant effect of alleviating chronic intestinal mucosa damage associated with disease. However, the underlying mechanism behind this is still unknown. In the current study, we employed the AOM/DSS mouse model to analyze the effects of HBD on the development of inflammation in colonic carcinoma. The in vivo study showed that HBD could significantly reduce the mortality of mice and control the incidence and size of colonic tumors by inhibiting the IL-6/STAT3 signaling pathway. In vitro, Astragaloside and Atractylenolide (CAA), the main components of HBD, inhibited the proliferation of HCT-116 cells as determined by an MTT assay. Furthermore, CAA notably suppressed the protein expression of IL-6R, STAT3, Survivin, and Cyclin D1 induced by IL-6 in HCT-116 and RAW264.7 cells. These results suggested that HBD exhibits anti-inflammatory and anti-proliferative effects, inhibiting the development of CAC in mice.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/etiologia , Medicamentos de Ervas Chinesas/farmacologia , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Receptores de Interleucina-6/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Dodecilsulfato de Sódio/toxicidade
6.
Int J Biometeorol ; 61(2): 247-258, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27378281

RESUMO

The cropland ecosystem in semiarid areas is sensitive to climate change. The accurate representation of crop phenology is important for predicting the carbon and water exchange process. The performance of a newly developed phenological model (SiBcrop) for simulations of carbon flux phenology in a semiarid area ecosystem was evaluated. The results showed that the SiBcrop improved the prediction for daily maximum gross primary production (GPP), and the days GPP reached the maximum value were closer to the observation, compared to SiB3. SiBcrop had a better prediction for both monthly total net ecosystem exchange (NEE) in the growing season than in the dormant season in semiarid areas. The day when the cumulative NEE predicted with SiBcrop became positive was closer to the observation. The observed start date of carbon uptake (CUstart) had a larger annual variation than did the end date of carbon uptake (CUend). SiBcrop had a better prediction for CUstart but poor for CUend, compared to SiB3. There was a longer carbon uptake period (CUP) predicted with SiBcrop than the observed results.


Assuntos
Ciclo do Carbono , Produtos Agrícolas , Modelos Teóricos , China , Mudança Climática , Ecossistema , Estações do Ano , Água/análise , Zea mays
7.
Ying Yong Sheng Tai Xue Bao ; 35(2): 298-306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523086

RESUMO

Based on the continuous inventory data of forest resources in Zhejiang Province in 2019 and 2021, we used statistical methods such as polynomial regression to analyze the impacts of topography and forest spatial structure on average annual diameter at breast height (DBH) growth of main pioneer tree species in natural broad-leaved mixed forests. The results showed that DBH of Schima superba, Quercus glauca, Quercus fabri, Lithocarpus glaber, Castanopsis eyrei, and Castanopsis sclerophylla were between 5-50.8, 5-41.5, 5-50.8, 5-43.9, 5-55.5, and 5-46.1 cm, respectively. We classified all the trees into three classes based on DBH: small (6-12 cm), medium (12-14 cm), and large (>26 cm). The average annual DBH growth of S. superba and Q. glauca was the highest on semi-shady slope and shady slope, with increases of 2.9%-15.7% and 1.1%-41.2%, respectively. The average annual DBH growth of large-diameter S. superba, L. glaber, C. eyrei and C. sclerophylla decreased with the increase of slope, with a maximum decrease of 27.0% for S. superba, with no significant difference among small- and medium-diameter trees as a whole. The slope position did not affect the annual DBH growth of small-diameter trees, while that of medium- and large-diameter S. superba, Q. glauca, and large-diameter Q. fabri, L. glaber decreased with the change of slope position from downhill, mesoslope, uphill to ridge, with a maximum decrease of 28.1% for L. glabe, and the major-diameter C. eyrei was on the contrary. Appropriate increase in the mingling was beneficial to the average annual DBH growth of medium- and large-diameter trees. Moderate mixing was suitable for S. superba, while low degree mixing and moderate mixing was suitable for Q. glauca, Q. fabri and L. glaber, and intensive mixing was suitable for C. eyrei and C. sclerophylla. No significant difference was observed for minor-diameter trees under the mingling. The neighborhood comparison only had a significant effect on the average annual DBH growth of large-diameter Q. glauca, Q. fabri, and L. glaber, which was significantly higher under subdominance-moderation than moderation-inferiority. The average annual DBH growth in the study area was mainly affected by aspect and mixing degree.


Assuntos
Pinus , Quercus , Árvores , Florestas , China
8.
Int J Biochem Cell Biol ; 173: 106609, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880193

RESUMO

Indomethacin, as a non-steroidal anti-inflammatory drugs, is widely used in the clinic. However, it can cause severe injury to the gastrointestinal tract and the incidence is increasing. It has become an essential clinical problem in preventing intestinal damage. Teprenone has been reported to have a significant positive effect on intestinal mucosal lesions, but long-term use of teprenone can elicit adverse reactions. WeiNaiAn capsule is a traditional Chinese medicine formulation used widely in the treatment of gastric and duodenal mucosal injury. However, how WeiNaiAn protects against intestinal mucosal injury and its mechanism of action are not known. In this study, WeiNaiAn capsule or Teprenone treatment improved the intestinal mucosal pathological score and antioxidant level in indomethacin-induced rats. 16 S rRNA sequence data showed WeiNaiAn capsule reverted the structure community and replenished the beneficial bacteria. Furthermore, fingerprint analysis revealed multiple components of WeiNaiAn capsule, including calycosin glucoside, ginsenoside Rg1, ginsenoside Rb1, taurocholic acid sodium, formonetin, and calycosin glucoside. The components of WeiNaiAn capsule promoted the wound healing of the epithelial cell in vitro. Moreover, the components of WeiNaiAn capsule inhibited the protein expressions of phosphoinositide 3-kinase /protein kinase B /mammalian target of rapamycin in hydrogen peroxide or lipopolysaccharides-induced cell model. In conclusion, WeiNaiAn capsule improves intestinal mucosal injury by regulating cell migration, enhancing antioxidant activity, and promoting the structure of the bacterial community homeostasis, the multiple targets provide the parameters for the treatment in the clinic.

9.
J Mol Med (Berl) ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953935

RESUMO

Diabetes mellitus (DM), an important public health problem, aggravates the global economic burden. Diabetic encephalopathy (DE) is a serious complication of DM in the central nervous system. Metformin has been proven to improve DE. However, the mechanism is still unclear. In this study, the db/db mice, a common model used for DE, were employed to explore and study the neuroprotective effect of metformin and related mechanisms. Behavioral tests indicated that metformin (100 or 200 mg/kg/day) could significantly improve the learning and memory abilities of db/db mice. The outcomes from the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) demonstrate that metformin effectively modulates glucose and insulin signaling pathways in db/db mice. The results of body weight and blood lipid panel (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) show that metformin promotes the level of lipid metabolism in db/db mice. Furthermore, data from oxidative stress assays, which measured levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase, suggest that metformin suppresses oxidative stress-induced brain damage in db/db mice. In addition, western blot, Nissl staining, and immunofluorescence results showed that metformin increased the expressions of nerve growth factor and postsynaptic density 95 and repaired neuronal structural damage. For the mechanism study, metformin activated SIRT1 and inhibited the expression of NLRP3 inflammasome (NLRP3, ASC, caspase-1, IL-1ß, and IL-18) and inflammatory cytokines (TNFα and IL-6). In conclusion, metformin could ameliorate cognitive dysfunction through the SIRT1/NLRP3 pathway, which might be a promising mechanism for DE treatment.

10.
Biomed Pharmacother ; 171: 116190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278026

RESUMO

Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.


Assuntos
Doença de Alzheimer , Morfinanos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Neuroimunomodulação , Escopolamina/farmacologia , Inflamação/patologia , Homeostase , Encéfalo/metabolismo , Colinérgicos/farmacologia
11.
Food Funct ; 15(8): 4490-4502, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38566566

RESUMO

High-fat diet (HFD) has been associated with certain negative bone-related outcomes, such as bone metabolism disruption and bone loss. Sciadonic acid (SC), one of the main nutritional and functional components of Torreya grandis seed oil, is a unique Δ5-unsaturated-polymethylene-interrupted fatty acid (Δ5-UPIFA) that has been claimed to counteract such disorders owing to some of its physiological effects. However, the role of SC in ameliorating bone metabolism disorders due to HFD remains unclear. In the present investigation, we observed that SC modulates the OPG/RANKL/RANK signaling pathway by modifying the lipid metabolic state and decreasing inflammation in mice. In turn, it could balance bone resorption and formation as well as calcium and phosphorus levels, enhance bone strength and bone mineral density (BMD), and improve its microstructure. In addition, SC could inhibit fat vacuoles in bone, reverse the phenomenon of reduced numbers and poor continuity of bone trabeculae, and promote orderly arrangement of collagen fibers and cartilage repair. This study provides some theoretical basis for SC as a dietary intervention agent to enhance bone nutrition.


Assuntos
Densidade Óssea , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Ligante RANK/metabolismo , Osteoprotegerina/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Chin J Integr Med ; 30(6): 565-576, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565799

RESUMO

Intestinal macrophages play crucial roles in both intestinal inflammation and immune homeostasis. They can adopt two distinct phenotypes, primarily determined by environmental cues. These phenotypes encompass the classically activated pro-inflammatory M1 phenotype, as well as the alternatively activated anti-inflammatory M2 phenotype. In regular conditions, intestinal macrophages serve to shield the gut from inflammatory harm. However, when a combination of genetic and environmental elements influences the polarization of these macrophages, it can result in an M1/M2 macrophage activation imbalance, subsequently leading to a loss of control over intestinal inflammation. This shift transforms normal inflammatory responses into pathological damage within the intestines. In patients with ulcerative colitis-associated colorectal cancer (UC-CRC), disorders related to intestinal inflammation are closely correlated with an imbalance in the polarization of intestinal M1/M2 macrophages. Therefore, reinstating the equilibrium in M1/M2 macrophage polarization could potentially serve as an effective approach to the prevention and treatment of UC-CRC. This paper aims to scrutinize the clinical evidence regarding Chinese medicine (CM) in the treatment of UC-CRC, the pivotal role of macrophage polarization in UC-CRC pathogenesis, and the potential mechanisms through which CM regulates macrophage polarization to address UC-CRC. Our objective is to offer fresh perspectives for clinical application, fundamental research, and pharmaceutical advancement in UC-CRC.


Assuntos
Neoplasias Associadas a Colite , Progressão da Doença , Macrófagos , Humanos , Macrófagos/patologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Colorretais/patologia , Animais , Colite Ulcerativa/patologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/complicações
13.
J Ethnopharmacol ; 310: 116326, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36898450

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine (TCM) prescription widely used in treating mental retardation and neurodegenerative diseases with kidney deficiency, has been reported to attenuate oxidative stress-related neuronal apoptosis. Chronic cerebral hypoperfusion (CCH) is considered to be related to cognitive and emotional disorders. However, it remains to be clarified that the effect of BSYZ on CCH and its underlying mechanism. AIM OF THE STUDY: In the present study, we aimed to investigate the therapeutic effects and underlying mechanisms of BSYZ on CCH- injured rats based on the domination of oxidative stress balance and mitochondrial homeostasis through inhibiting abnormal excessive mitophagy. MATERIALS AND METHODS: The in vivo rat model of CCH was established by bilateral common carotid artery occlusion (BCCAo), while the in vitro PC12 cell model was exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) condition, and a mitophagy inhibitor (chloroquine) by decreasing autophagosome-lysosome fusion was used as reverse validation in vitro. The protective role of BSYZ on CCH-injured rats was measured by open field test, morris water maze test, analysis of amyloid fibrils and apoptosis, and oxidative stress kit. The expression of mitochondria-related and mitophagy-related proteins was evaluated by Western blot, immunofluorescence, JC-1 staining assay and Mito-Tracker Red CMXRos assay. The components of BSYZ extracts were identified by HPLC-MS. The molecular docking studies were used to investigate the potential interactions of characteristic compounds in BSYZ with lysosomal membrane protein 1 (LAMP1). RESULTS: Our result indicated that BSYZ improved the cognition and memory abilities of the BCCAo rats by diminishing the occurrence of apoptosis and abnormal amyloid deposition accumulation, suppressing oxidative stress damage for abnormal excessive mitophagy activation in the hippocampus. Moreover, in OGD/R-damaged PC12 cells, BSYZ drug serum treatment substantially enhanced the PC12 cell viability and suppressed intracellular reactive oxygen species (ROS) accumulation for protecting against oxidative stress, along with the improvement of mitochondrial membrane activity and lysosomal proteins. Our studies also showed that inhibiting of autophagosome-lysosome fusion to generate autolysosomes by using chloroquine abrogated the neuroprotective effects of BSYZ on PC12 cells regarding the modulation of antioxidant defence and mitochondrial membrane activity. Furthermore, the molecular docking studies supported the direct bindings between lysosomal associated membrane protein 1 (LAMP1) and compounds in BSYZ extract to inhibit excessive mitophagy. CONCLUSION: Our study demonstrated that BSYZ played a neuroprotective role in rats with CCH and reduced neuronal oxidative stress via promoting the formation of autolysosomes to inhibit abnormal excessive mitophagy.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Ratos , Animais , Mitofagia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Simulação de Acoplamento Molecular , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Apoptose
14.
MAbs ; 15(1): 2152526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36476037

RESUMO

To combat the COVID-19 pandemic, potential therapies have been developed and moved into clinical trials at an unprecedented pace. Some of the most promising therapies are neutralizing antibodies against SARS-CoV-2. In order to maximize the therapeutic effectiveness of such neutralizing antibodies, Fc engineering to modulate effector functions and to extend half-life is desirable. However, it is critical that Fc engineering does not negatively impact the developability properties of the antibodies, as these properties play a key role in ensuring rapid development, successful manufacturing, and improved overall chances of clinical success. In this study, we describe the biophysical characterization of a panel of Fc engineered ("TM-YTE") SARS-CoV-2 neutralizing antibodies, the same Fc modifications as those found in AstraZeneca's Evusheld (AZD7442; tixagevimab and cilgavimab), in which the TM modification (L234F/L235E/P331S) reduce binding to FcγR and C1q and the YTE modification (M252Y/S254T/T256E) extends serum half-life. We have previously shown that combining both the TM and YTE Fc modifications can reduce the thermal stability of the CH2 domain and possibly lead to developability challenges. Here we show, using a diverse panel of TM-YTE SARS-CoV-2 neutralizing antibodies, that despite lowering the thermal stability of the Fc CH2 domain, the TM-YTE platform does not have any inherent developability liabilities and shows an in vivo pharmacokinetic profile in human FcRn transgenic mice similar to the well-characterized YTE platform. The TM-YTE is therefore a developable, effector function reduced, half-life extended antibody platform.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , SARS-CoV-2/genética , Pandemias , Anticorpos Neutralizantes
15.
J Phys Chem Lett ; 13(5): 1366-1372, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35112863

RESUMO

Electrostatically driven attractions between proteins can result in issues for therapeutic protein formulations such as solubility limits, aggregation, and high solution viscosity. Previous work showed that a model monoclonal antibody displayed large and potentially problematic electrostatically driven attractions at typical pH (5-8) and ionic strength conditions (∼10-100 mM). Molecular simulations of a hybrid coarse-grained model (1bC/D, one bead per charged site and per domain) were used to predict potential point mutations to identify key charge changes (charge-to-neutral or charge-swap) that could greatly reduce the net attractive protein-protein self-interactions. A series of variants were tested experimentally with static and dynamic light scattering to quantify interactions and compared to model predictions at low and intermediate ionic strength. Differential scanning calorimetry and circular dichroism confirmed minimal impact on structural or thermal stability of the variants. The model provided quantitative/semiquantitative predictions of protein self-interactions compared to experimental results as well as showed which amino acid pairings or groups had the most impact.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Células HEK293 , Humanos , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Eletricidade Estática
16.
J Chromatogr A ; 1679: 463385, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35933770

RESUMO

Protein A chromatography with a high salt wash usually leads to robust clearance of host cell proteins (HCPs) in most recombinant monoclonal antibodies (mAbs), but a small subset of recalcitrant mAbs show significant HCP copurification. In this study, we carried out systematic studies using 4 different mAbs to explore the HCP copurification mechanism. HCP identification results revealed that the 3 high-HCP mAbs had many common HCPs which do not copurify with the low-HCP mAb, suggesting a similar mechanism is at play. Through wash evaluation, surface patch analysis, chain-swapping, domain evaluation, and structure-guided mutations, several charged residues in each mAb were found which correlated with HCP copurification. Surprisingly, these residues are also critical for self-association propensity. We observed an inverse correlation between diffusion interaction parameter and HCP copurification. Each of the high-HCP mAbs could form dynamic clusters consisting of 3∼6 mAb molecules. Therefore, a mAb cluster can exhibit higher net positive charges on the order of 3 to 6, compared with the individual mAb. In Protein A chromatography, high-HCP mAbs had elution tailing which contained high level of HCPs. Addition of Arginine-HCl or point mutations preventing cluster formation effectively reduced HCP copurification and elution tailing. Based on these results, we propose a novel HCP-copurification mechanism that formation of mAb clusters strengthens charge-charge interactions with HCPs and thus compromises HCP removal by Protein A chromatography. Besides arginine, histidine under acidic pH conditions prevented cluster formulation and resulted in effective HCP removal. Finally, structure-guided protein engineering and solution screening by using cluster size as indicator are useful tools for managing mAbs with high-HCP issues.


Assuntos
Anticorpos Monoclonais , Proteína Estafilocócica A , Animais , Arginina , Células CHO , Cromatografia de Afinidade , Cricetinae , Cricetulus , Proteínas Recombinantes
17.
Front Pharmacol ; 13: 832088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211023

RESUMO

Acne vulgaris is one of the most common inflammatory dermatoses in dermatological practice and can affect any gender or ethnic group. Although in previous studies, we had found that licorice flavonoids (LCF) play an anti-acne role by inhibiting PI3K-Akt signaling pathways and mitochondrial activity, the mechanism of LCF regulating skin metabolism, serum metabolism and skin microbes is still unclear. Here, we performed a full spectrum analysis of metabolites in the skin and serum using UHPLC-Triple TOF-MS. The results showed that LCF could treat acne by regulating the metabolic balance of amino acids, lipids and fatty acids in serum and skin. Similarly, we performed Illumina Hiseq sequencing of DNA from the skin microbes using 16S ribosomal DNA identification techniques. The results showed that LCF could treat acne by regulating the skin microbes to interfere with acne and make the microecology close to the normal skin state of rats. In summary, this study confirmed the anti-acne mechanism of LCF, namely by regulating metabolic balance and microbial balance. Therefore, this discovery will provide theoretical guidance for the preparation development and clinical application of the drug.

18.
Phytomedicine ; 100: 154050, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35397284

RESUMO

BACKGROUND: Sinomenine (SIN) is an anti-inflammatory drug that has been used for decades in China to treat arthritis. In a previous study, SIN acted on α7 nicotinic acetylcholine receptor (α7nAChR) to inhibit inflammatory responses in macrophages, which indicates a new anti-inflammatory mechanism of SIN. However, the level of α7nAChR was increased in the inflammatory responses and was downregulated by SIN in vitro, so the underlying mechanisms of SIN acting on α7nAChR remain unclear. PURPOSE: To analyze the role of α7nAChR in inflammation and the effect and mechanism of SIN regulation of α7nAChR. METHODS: The effects of SIN on α7nAChR in endotoxemic mice and LPS-stimulated macrophages were observed. Nicotine (Nic) was used as a positive control, and berberine (Ber) was used as a negative control targeting α7nAChR. The antagonists of α7nAChR, α-bungarotoxin (BTX) and mecamylamine (Me), were used to block α7nAChR. In RAW264.7 macrophage cells in vitro, α7nAChR short hairpin RNA (shRNA) was used to knock down α7nAChR. Macrophage polarization was analyzed by the detection of TNF-α, IL-6, iNOS, IL-10, Arg-1, and Fizz1. U0126 was used to block ERK phosphorylation. The cytokines α7nAChR, ERK1/2, p-ERK1/2 and Egr-1 were detected. RESULTS: SIN decreased the levels of TNF-α, IL-6 and the expression of α7nAChR increased by LPS in endotoxemic mice. The above effects of SIN were attenuated by BTX. In the α7nAChR shRNA transfected RAW264.7 cells, compared with the control, α7nAChR was knocked down, and M1 phenotype markers (including TNF-α, IL-6, and iNOS) were significantly downregulated, whereas M2 phenotype markers (including IL-10, Arg-1, and Fizz1) were significantly upregulated when stimulated by LPS. SIN inhibited the expression of p-ERK1/2 and the transcription factor Egr-1 induced by LPS in RAW264.7 cells, and the above effects of SIN were attenuated by BTX. The expression of α7nAChR was suppressed by U0126, which lessened the expression of p-ERK1/2 and Egr-1. CONCLUSIONS: SIN acts on α7nAChR to inhibit inflammatory responses and downregulates high expression of α7nAChR in vivo and in vitro. The increase of α7nAChR expression is correlated with inflammatory responses and participates in macrophage M1 polarization. SIN downregulates α7nAChR via a feedback pathway of α7nAChR/ERK/Egr-1, which contributes to inhibiting macrophage M1 polarization and inflammatory responses.


Assuntos
Interleucina-10 , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Retroalimentação , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , Morfinanos , RNA Interferente Pequeno/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
19.
Microbiol Spectr ; 10(5): e0103422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35993765

RESUMO

AZD7442, a combination of two long-acting monoclonal antibodies (tixagevimab [AZD8895] and cilgavimab [AZD1061]), has been authorized for the prevention and treatment of coronavirus disease 2019 (COVID-19). The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants requires methods capable of quickly characterizing resistance to AZD7442. To support AZD7442 resistance monitoring, a biolayer interferometry (BLI) assay was developed to screen the binding of tixagevimab and cilgavimab to SARS-CoV-2 spike proteins to reduce the number of viral variants for neutralization susceptibility verification. Six spike variants were chosen to assess the assay's performance: four with decreased affinity for tixagevimab (F486S:D614G and F486W:D614G proteins) or cilgavimab (S494L:D614G and K444R:D614G proteins) and two reference proteins (wild-type HexaPro and D614G protein). Equilibrium dissociation constant (KD) values from each spike protein were used to determine shifts in binding affinity. The assay's precision, range, linearity, and limits of quantitation were established. Qualification acceptance criteria determined whether the assay was fit for purpose. By bypassing protein purification, the BLI assay provided increased screening throughput. Although limited correlation between pseudotype neutralization and BLI data (50% inhibitory concentration versus KD) was observed for full immunoglobulins (IgGs), the correlations for antibody fragments (Fabs) were stronger and reflected a better comparison of antibody binding kinetics with neutralization potency. Therefore, despite strong assay performance characteristics, the use of full IgGs limited the screening utility of the assay; however, the Fab approach warrants further exploration as a rapid, high-throughput variant-screening method for future resistance-monitoring programs. IMPORTANCE SARS-CoV-2 variants harbor multiple substitutions in their spike trimers, potentially leading to breakthrough infections and clinical resistance to immune therapies. For this reason, a BLI assay was developed and qualified to evaluate the reliability of screening SARS-CoV-2 spike trimer variants against anti-SARS-CoV-2 monoclonal antibodies (MAbs) tixagevimab and cilgavimab, the components of AZD7442, prior to in vitro pseudovirus neutralization susceptibility verification testing. The assay bypasses protein purification with rapid assessment of the binding affinity of each MAb for each recombinant protein, potentially providing an efficient preliminary selection step, thus allowing a reduced testing burden in the more technically complex viral neutralization assays. Despite precise and specific measures, an avidity effect associated with MAb binding to the trimer confounded correlation with neutralization potency, negating the assay's utility as a surrogate for neutralizing antibody potency. Improved correlation with Fabs suggests that assay optimization could overcome any avidity limitation, warranting further exploration to support future resistance-monitoring programs.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , Reprodutibilidade dos Testes , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais , Interferometria , Fragmentos de Imunoglobulinas , Proteínas Recombinantes
20.
Medicine (Baltimore) ; 100(41): e27507, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34731135

RESUMO

BACKGROUND: The study was conducted to investigate the value of Positron emission tomography computed tomography (PET/CT) in predicting invasiveness of ground glass nodule (GGN) by the method of meta-analysis. METHODS: Two researchers independently searched for published literature on PET/CT diagnosis of GGN as of November 30, 2020. After extracting the data, RevMan5.3 was used to evaluate the quality of the included literature. The Stata14 software was used to test the heterogeneity of the original study that met the inclusion criteria, to calculate the combined sensitivity, specificity, positive likelihood ratio and negative likelihood ratio, the prior probability and posttest probability. The summary receiver operator characteristic curve was drawn and the area under the curve was calculated. Using Deeks funnel plot to evaluate publication bias. RESULTS: Five studies were finally included, including 298 GGN cases. The included studies had no obvious heterogeneity and publication bias. The combined sensitivity and specificity of PET/CT for predicting invasive adenocarcinoma presenting as GGN were 0.74 (95% confidence interval [CI]: 0.68-0.79), 0.82 (95% CI: 0.71-0.90), positive likelihood ratio and negative likelihood ratio were 4.1 (95% CI: 2.5-6.9), 0.32 (95% CI: 0.25-0.40), and the diagnostic odds ratio was 13 (95% CI: 7-26). The prior probability is 20%, the probability of GGN being invasive adenocarcinoma when PET/CT was negative was reduced to 7%, and the probability of GGN being invasive adenocarcinoma when PET/CT was positive was increased to 51%. The area under the curve of the summary receiver operator characteristic curve was 0.85. CONCLUSION: PET/CT has high diagnostic accuracy for invasive adenocarcinoma presenting as GGN.


Assuntos
Neoplasias Pulmonares/patologia , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Adenocarcinoma/diagnóstico , Adenocarcinoma/mortalidade , Área Sob a Curva , Humanos , Nódulos Pulmonares Múltiplos/mortalidade , Nódulos Pulmonares Múltiplos/patologia , Invasividade Neoplásica/patologia , Valor Preditivo dos Testes , Curva ROC , Sensibilidade e Especificidade , Taxa de Sobrevida , Metanálise como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA