Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Neurosci Res ; 102(2): e25297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361412

RESUMO

Genetic risk for schizophrenia is thought to trigger variation in clinical features of schizophrenia, but biological processes associated with neuronal activity in brain regions remain elusive. In this study, gene expression features were mapped to various sub-regions of the brain by integrating low-frequency amplitude features and gene expression data from the schizophrenia brain and using gene co-expression network analysis of the Allen Transcriptome Atlas of the human brain from six donors to identify genetic features of brain regions and important associations with neuronal features. The results indicate that changes in the dynamic amplitude of low-frequency fluctuation (dALFF) are mainly associated with transcriptome signature factors such as cortical layer synthesis, immune response, and expanded membrane transport. Further modular disease enrichment analysis revealed that the same set of signature genes associated with dALFF levels was enriched for multiple neurological biological processes. Finally, genetic profiling of individual modules identified multiple core genes closely related to schizophrenia, also potentially associated with neuronal activity. Thus, this paper explores genetic features of brain regions in the schizophrenia closely related to low-frequency amplitude ratio levels based on imaging genetics, which suggests structural endophenotypes associated with schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Neurônios/metabolismo , Imageamento por Ressonância Magnética
2.
Bioorg Chem ; 146: 107318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579613

RESUMO

Twenty-seven rosmarinic acid derivatives were synthesized, among which compound RA-N8 exhibited the most potent antibacterial ability. The minimum inhibition concentration of RA-N8 against both S. aureus (ATCC 29213) and MRSA (ATCC BAA41 and ATCC 43300) was found to be 6 µg/mL, and RA-N8 killed E. coli (ATCC 25922) at 3 µg/mL in the presence of polymyxin B nonapeptide (PMBN) which increased the permeability of E. coli. RA-N8 exhibited a weak hemolytic effect at the minimum inhibitory concentration. SYTOX Green assay, SEM, and LIVE/DEAD fluorescence staining assay proved that the mode of action of RA-N8 is targeting bacterial cell membranes. Furthermore, no resistance in wildtype S. aureus developed after incubation with RA-N8 for 20 passages. Cytotoxicity studies further demonstrated that RA-N8 is non-toxic to the human normal cell line (HFF1). RA-N8 also exerted potent inhibitory ability against biofilm formation of S. aureus and even collapsed the shaped biofilm.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/química , Staphylococcus aureus , Ácido Rosmarínico , Escherichia coli , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Biofilmes
3.
Eur J Neurosci ; 54(6): 6304-6321, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34405468

RESUMO

Neonatal hypoxic-ischaemic (HI) injury is a serious complication of neonatal asphyxia and the leading cause of neonatal acute death and chronic neurological injury, and the effective therapeutic method is lacking to improve patients' outcomes. We reported in this study that panax notoginseng saponin (PNS) may provide a treatment option for HI. HI model was established using neonatal Sprague-Dawley rats and then intraperitoneally injected with different dosage of PNS, once a day for 7 days. Histological staining and behavioural evaluations were performed to elucidate the pathological changes and neurobehavioural variation after PNS treatment. We found PNS administration significantly reduced the infarct volume of brain tissues and improved the autonomous activities of neonatal rats, especially with higher dosage. PNS treatment at 40 mg/kg reduced neuronal damage, suppressed neuronal apoptosis and depressed astroglial reactive response. Moreover, the long-term cognitive and motor functions were also improved after PNS treatment at 40 mg/kg. Importantly, PNS treatment elevated the levels of BDNF and TrkB but decreased the expression of p75NTR both in the cortex and hippocampus of HI rats. The therapeutic efficacy of PNS might be correlated with PNS-activated BDNF/TrkB signalling and inactivation of p75NTR expression, providing a novel potential therapy for alleviating HI injury.


Assuntos
Panax notoginseng , Saponinas , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Fatores de Crescimento Neural , Ratos , Ratos Sprague-Dawley , Saponinas/farmacologia
4.
J Enzyme Inhib Med Chem ; 33(1): 879-889, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29722581

RESUMO

The increasing incidence of multidrug resistant bacterial infection renders an urgent need for the development of new antibiotics. To develop small molecules disturbing FtsZ activity has been recognized as promising approach to search for antibacterial of high potency systematically. Herein, a series of novel quinolinium derivatives were synthesized and their antibacterial activities were investigated. The compounds show strong antibacterial activities against different bacteria strains including MRSA, VRE and NDM-1 Escherichia coli. Among these derivatives, a compound bearing a 4-fluorophenyl group (A2) exhibited a superior antibacterial activity and its MICs to the drug-resistant strains are found lower than those of methicillin and vancomycin. The biological results suggest that these quinolinium derivatives can disrupt the GTPase activity and dynamic assembly of FtsZ, and thus inhibit bacterial cell division and then cause bacterial cell death. These compounds deserve further evaluation for the development of new antibacterial agents targeting FtsZ.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Quinolinas/farmacologia , Tiazóis/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/citologia , Humanos , Staphylococcus aureus Resistente à Meticilina/citologia , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Enterococos Resistentes à Vancomicina/citologia
5.
Angew Chem Int Ed Engl ; 57(50): 16452-16457, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30375752

RESUMO

The synthesis of discrete nanostructures with a strong, persistent, stable plasmonic circular dichroism (PCD) signal is challenging. We report a seed-mediated growth approach to obtain discrete Au nanorods with high and stable chiroptical responses (c-Au NRs) in the visible to near-IR region. The morphology of the c-Au NRs was governed by the concentration of l- or d-cysteine used. The amino acids encapsulated within the discrete gold nanostructure enhance their PCD signal, attributed to coupling of dipoles of chiral molecules with the near-field induced optical activity at the hot spots inside the c-Au NRs. The stability of the PCD signal and biocompatibility of c-Au NRs was improved by coating with silica or protein corona. Discrete c-Au NR@SiO2 with Janus or core-shell configurations retained their PCD signal even in organic solvents. A side-by-side assembly of c-Au NRs induced by l-glutathione led to further PCD signal enhancement, with anisotropic g factors as high as 0.048.


Assuntos
Materiais Biocompatíveis/química , Cisteína/química , Ouro/química , Nanotubos/química , Nanotubos/ultraestrutura , Dicroísmo Circular , Glutationa/química , Nanotecnologia , Dióxido de Silício/química , Estereoisomerismo
6.
Ibrain ; 10(1): 69-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38682019

RESUMO

Numerous brain diseases have been attributed to abnormalities in the connections of neural circuits. Exploration of neural circuits may give enlightenment in treating some intractable brain diseases. Here, we screened all publications on neural circuits in the Web of Science database from 2007 to 2022 and analyzed the research trends through VOSviewer, CiteSpace, Microsoft Excel 2019, and Origin. The findings revealed a consistent upward trend in research on neural circuits during this period. The United States emerged as the leading contributor, followed by China and Japan. Among the top 10 institutions with the largest number of publications, both the United States and China have a strong presence. Notably, the Chinese Academy of Sciences demonstrated the highest publication output, closely followed by Stanford University. In terms of influential authors, Karl Deisseroth stood out as one of the most prominent investigators. During this period, the majority of publications and citations on neural circuit research were found in highly influential journals including NEURON, NATURE JOURNAL OF NEUROSCIENCE, and so forth. Keyword clustering analysis highlighted the increasing focus on neural circuits and photogenetics in neuroscience research, and the reconstruction of neural circuits has emerged as a crucial research direction in brain science. In conclusion, over the past 15 years, the increasing high-quality publications have facilitated research development of neural circuits, indicating a promising prospect for investigations on neurological and psychiatric diseases.

7.
Zootaxa ; 5424(3): 358-366, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480281

RESUMO

In the present study, a new species of Macrolycus s. str. is reported from China and described as M. subapicis sp. nov. M. bowringi Waterhouse, 1878 is recorded to China for the first time. The above two species, M. oreophilus Kazantsev, 2002 and M. gansuensis Kazantsev, 2002 are illustrated with the male habitus and genitalia. In addition, a distribution map, and a key to the species of Macrolycus s. str. in the world are provided.


Assuntos
Besouros , Masculino , Animais , Distribuição Animal , China
8.
Neural Regen Res ; 19(9): 2027-2035, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227532

RESUMO

JOURNAL/nrgr/04.03/01300535-202409000-00035/figure1/v/2024-01-16T170235Z/r/image-tiff Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy, neurosensory impairments, and cognitive deficits, and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy. The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored. However, the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated. In this study, we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function. Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats. Following transplantation of human placental chorionic plate-derived mesenchymal stem cells, interleukin-3 expression was downregulated. To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy, we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA. We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown. Furthermore, interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy. The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy, and this effect was mediated by interleukin-3-dependent neurological function.

9.
Biosens Bioelectron ; 216: 114662, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058027

RESUMO

Nanozymes, an emerging family of heterogeneous nanomaterials with enzyme-like characteristics, offer significant advantages as alternatives to natural enzymes for diverse biocatalytic applications. Nevertheless, the inhomogeneous configuration of nanomaterials makes it extremely challenging to develop nanozymes of desired performance and reaction mechanism. Single-atom nanozymes (SAzymes) that are composed of single-atomic active sites may provide an answer to these challenges with remarkable enzyme-like activity and specificity. The well-defined coordination microenvironments of SAzymes offer a suitable model system to investigate the structure-activity relationship and thus bridge the gap between natural enzyme and nanozyme. In this review, we would first present an overview of discoveries, advantages, and classifications of SAzymes. Then, we would discuss the reaction mechanism, design principles, and biosensing applications of a series of typical SAzymes with a focus on the rational design strategies for targeted reaction and the effort to uncover the catalytic mechanism at the atomic scale. Finally, we would provide the challenges and future perspectives of SAzymes as the next-generation nanozymes.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Catálise , Domínio Catalítico , Nanoestruturas/química
10.
Insects ; 13(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555081

RESUMO

The lycid genus Mesolycus Gorham, 1883 is mainly distributed in East Palaearctic and Indochinese regions, but poorly studied in China; moreover, its phylogenetic placement remains controversial but has never been rigorously tested. In this study, Mesolycus was reviewed and its placement within Lycidae was tested based on a multilocus phylogeny (cox1, nad5, cox2 and Lrna) by both ML and BI analyses. The reconstructed phylogenies show that Mesolycus is a consistently recovered sister to Dilophotes Waterhouse, 1879, and they form a monophyletic clade which is well supported. This suggests that Mesolycus definitely belongs to Dilophotini rather than to Macrolycini of Lycinae. Besides, three species originally described or placed in Dilophotes are transferred to Mesolycus, including M. atricollis (Pic, 1926) comb. n., M. particularis (Pic, 1928) comb. n. and M. pacholatkoi (Bic, 2002) comb. n. Four new species are discovered in China, including M. shaanxiensis sp. n., M. dentatus sp. n., M. breviplatus sp. n. and M. varus sp. n. Two species, M. murzini Kazantsev, 2004 and M. rubromarginatus Kazantsev, 2013, are recorded from China for the first time. A key for the identification of all Mesolycus species is provided. China was revealed as the region with the highest species diversity of this genus.

11.
Ibrain ; 8(1): 93-99, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37786412

RESUMO

The objective of this study was to compare the efficiency of trypsin and papain in neuronal digestion and determine which enzyme is more efficient. Cortical tissues were obtained from Sprague-Dawley (SD) rats. According to the different digestive enzymes, the samples were divided into the trypsin group and the papain group. After being digested by each of the two enzymes, cortical neurons were collected from the samples. Then, the morphology of the cortical neurons was determined. Moreover, the cortical neurons were transfected with the negative control (NC) lentivirus. The transfection efficiency and morphology were determined and compared. Compared with the papain group, cortical neurons in the trypsin group were more in number, had larger cell size, had longer axonal length, and had fewer impurities. The transfection efficiency of the trypsin group (57.77%) was higher than that of the papain group (53.83%). The morphology of neurons that was displayed showed that the cell body of most neurons shrank and became smaller, and the axis mutation became shorter and less in the papain group 6 days after transfection with the NC lentivirus. Trypsin is more efficient in digesting neurons because the neurons digested by this enzyme are more in number, have a larger cell body, longer axons, and greater transfection efficiency.

12.
RSC Med Chem ; 13(1): 79-89, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35224498

RESUMO

Inhibition of bacterial cell division is a novel mechanistic action in the development of new antimicrobial agents. The FtsZ protein is an important antimicrobial drug target because of its essential role in bacterial cell division. In the present study, potential inhibitors of FtsZ were identified by virtual screening followed by in vivo and in vitro bioassays. One of the candidates, Dacomitinib (S2727), shows for the first time its potent inhibitory activity against the MRSA strains. The binding mode of Dacomitinib in FtsZ was analyzed by docking, and Asp199 and Thr265 are thought to be essential residues involved in the interactions.

13.
Neurol Res ; 44(12): 1053-1065, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35981107

RESUMO

OBJECTIVE: Numerous pathological variations and complex interactions are involved in the long period prior to cognitive decline in brains with Alzheimer's disease (AD). Thus, elucidation of the pathological disorders can facilitate early AD diagnosis. The aim of this study was to investigate the age-specific pathological changes of ß-amyloid plaques in brain tissues of AD mice at different ages. METHODS: We arranged the most widely available APP/PS1 transgenic AD models into six age groups: 3, 4 and 6 months (these three groups mimicked early-clinical stage AD), 9, 12 and 15 months (these three groups mimicked late-clinical stage AD). Cell morphology and arrangement in the cortex and hippocampus were observed by hematoxylin and eosin (HE) staining. Congo red staining and immunohistochemical staining were performed to exhibit the distribution of ß-amyloid plaques in the cortex and hippocampus of AD brains. RESULTS: Our results found that as age increased, the nuclei of cortical and hippocampal cells in AD mice were severely damaged. The number and area of ß-amyloid plaques increased in AD mice in correspondence with age revealed by histological experiments. Importantly, ß-amyloid plaques were detected in the cortex and hippocampus of 6-month-old AD mice shown by Congo red staining while detected in the cortex and hippocampus of 4-month-old AD mice shown by immunohistochemical staining. CONCLUSIONS: The current study revealed the age-related pathological changes of ß-amyloid plaques in the cortex and hippocampus of AD mice and displayed a higher specificity of immunohistochemical staining than Congo red staining when detecting pathological changes of brain tissues.


Assuntos
Fatores Etários , Doença de Alzheimer , Placa Amiloide , Animais , Camundongos , Peptídeos beta-Amiloides , Camundongos Transgênicos
14.
Front Microbiol ; 13: 1080308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713210

RESUMO

Antimicrobial resistance has attracted worldwide attention and remains an urgent issue to resolve. Discovery of novel compounds is regarded as one way to circumvent the development of resistance and increase the available treatment options. Gossypol is a natural polyphenolic aldehyde, and it has attracted increasing attention as a possible antibacterial drug. In this paper, we studied the antimicrobial properties (minimum inhibitory concentrations) of gossypol acetate against both Gram-positive and Gram-negative bacteria strains and dig up targets of gossypol acetate using in vitro assays, including studying its effects on functions (GTPase activity and polymerization) of Filamenting temperature sensitive mutant Z (FtsZ) and its interactions with FtsZ using isothermal titration calorimetry (ITC), and in vivo assays, including visualization of cell morphologies and proteins localizations using a microscope. Lastly, Bacterial membrane permeability changes were studied, and the cytotoxicity of gossypol acetate was determined. We also estimated the interactions of gossypol acetate with the promising target. We found that gossypol acetate can inhibit the growth of Gram-positive bacteria such as the model organism Bacillus subtilis and the pathogen Staphylococcus aureus [both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA)]. In addition, gossypol acetate can also inhibit the growth of Gram-negative bacteria when the outer membrane is permeabilized by Polymyxin B nonapeptide (PMBN). Using a cell biological approach, we show that gossypol acetate affects cell division in bacteria by interfering with the assembly of the cell division FtsZ ring. Biochemical analysis shows that the GTPase activity of FtsZ was inhibited and polymerization of FtsZ was enhanced in vitro, consistent with the block to cell division in the bacteria tested. The binding mode of gossypol acetate in FtsZ was modeled using molecular docking and provides an understanding of the compound mode of action. The results point to gossypol (S2303) as a promising antimicrobial compound that inhibits cell division by affecting FtsZ polymerization and has potential to be developed into an effective antimicrobial drug by chemical modification to minimize its cytotoxic effects in eukaryotic cells that were identified in this work.

15.
Ibrain ; 8(2): 148-164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37786892

RESUMO

To screen out the prospective biomarkers of viral encephalitis (VE), analyze the biological process and signaling pathways involved by differentially expressed proteins (DEPs). A total of 11 cerebrospinal fluid (CSF) samples with VE and 5 with non-nervous system infection were used to perform label-free proteomic techniques. Then, the bioinformatic analysis of DEPs was applied by Interproscan software. Moreover, 73 CSF samples in the VE group and 53 in the control group were used to verify the changes of some DEPs by enzyme-linked immunosorbent assay (ELISA). Thirty-nine DEPs were identified, including 18 upregulated DEPs and 21 downregulated DEPs. DEPs were mainly enriched in cell adhesion molecules by Kyoto Encyclopedia of Genes and Genomes analysis pathway analysis. The DEPs related to axon tissue were obviously downregulated and the most significant downregulated proteins were neurexin 3, neurofascin, and neuroligin 2 (NLGN2). Moreover, the protein expression of NLGN2 in the VE group was significantly higher than that in the control group by ELISA. The correlation analysis of NLGN2 in the VE group revealed that there was a weak positive correlation with CSF protein and a weak negative correlation with CSF chloride. The clinical VE may be closely related to NLGN2 and the cell adhesion molecule pathway.

17.
Biochim Biophys Acta Proteins Proteom ; 1870(10): 140833, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944887

RESUMO

Bacteria expressing NDM-1 have been labeled as superbugs because it confers upon them resistance to a broad range of ß-lactam antibiotics. The enzyme has a di­zinc active centre, with the Zn2 site extensively studied. The roles of active-site Zn1 ligand residues are, however, still not fully understood. We carried out structure-function studies using the mutants, H116A, H116N, and H116Q. Zinc content analysis showed that Zn1 binding was weakened by 40 to 60% in the H116 mutants. The enzymatic-activity studies showed that the lower hydrolysis rates were mainly caused by their weaker substrate binding. The catalytic efficiency (kcat/Km) of the mutants followed the order: WT > > H116Q (decreased by 4-20 fold) > H116A (decreased by 20-700 fold) ≥ H116N (decreased by 6-800 fold). The maximum effect was observed on H116N against penicillin G, whereas ampicillin was not hydrolyzed at all. The fold-increase of Km values, which informs the weakening of substrate binding, were: H116A by 5-45 fold; H116N by 6-100 fold; H116Q by 2-10 fold. Molecular dynamics simulations suggested that the Zn1 site mutations affected the positions of Zn2 and the bridging hydroxide, by 0.8 to 1.2 Å, with the largest changes of ~1.5 Å observed on Zn2 ligand C221. A native hydrogen bond between H118 and D236 was disrupted in the H116N and H116Q mutants, which led to increased flexibility of loop 10. Consequently, residue N233 was no longer maintained at an optimal position for substrate binding. H116 connected loop 7 across Zn1 to loop 10, thereby contributed to the overall integrity. This work revealed that the H116-Zn1 interaction plays a critical role in defining the substrate-binding site. From these results, it can be inferred that inhibition strategies targeting the zinc ions may be a new direction for drug development.


Assuntos
Antibacterianos , beta-Lactamases , Antibacterianos/farmacologia , Hidrólise , Ligantes , Zinco/metabolismo , beta-Lactamases/química
19.
Neural Regen Res ; 16(8): 1453-1459, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33433458

RESUMO

Brain-derived neurotrophic factor (BDNF) regulates many neurological functions and plays a vital role during the recovery from central nervous system injuries. However, the changes in BDNF expression and associated factors following hypoxia-ischemia induced neonatal brain damage, and the significance of these changes are not fully understood. In the present study, a rat model of hypoxic-ischemic brain damage was established through the occlusion of the right common carotid artery, followed by 2 hours in a hypoxic-ischemic environment. Rats with hypoxic-ischemic brain damage presented deficits in both sensory and motor functions, and obvious pathological changes could be detected in brain tissues. The mRNA expression levels of BDNF and its processing enzymes and receptors (Furin, matrix metallopeptidase 9, tissue-type plasminogen activator, tyrosine Kinase receptor B, plasminogen activator inhibitor-1, and Sortilin) were upregulated in the ipsilateral hippocampus and cerebral cortex 6 hours after injury; however, the expression levels of these mRNAs were found to be downregulated in the contralateral hippocampus and cerebral cortex. These findings suggest that BDNF and its processing enzymes and receptors may play important roles in the pathogenesis and recovery from neonatal hypoxic-ischemic brain damage. This study was approved by the Animal Ethics Committee of the University of South Australia (approval No. U12-18) on July 30, 2018.

20.
Am J Chin Med ; 49(3): 677-703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704029

RESUMO

To investigate the therapeutic efficacy of Scutellarin (SCU) on neurite growth and neurological functional recovery in neonatal hypoxic-ischemic (HI) rats. Primary cortical neurons were cultured to detect the effect of SCU on cell viability of neurons under oxygen-glucose deprivation (OGD). Double immunofluorescence staining of Tuj1 and TUNEL then observed the neurite growth and cell apoptosis in vitro,and double immunofluorescence staining of NEUN and TUNEL was performed to examine the neuronal apoptosis and cell apoptosis in brain tissues after HI in vivo. Pharmacological efficacy of SCU was also evaluated in HI rats by neurobehavioral tests, triphenyl tetrazolium chloride staining, Hematoxylin and eosin staining and Nissl staining. Astrocytes and microglia expression in damaged brain tissues were detected by immunostaining of GFAP and Iba1. A quantitative real-time polymerase chain reaction and western blot were applied to investigate the genetic expression changes and the protein levels of autophagy-related proteins in the injured cortex and hippocampus after HI. We found that SCU administration preserved cell viability, promoted neurite outgrowth and suppressed apoptosis of neurons subjected to OGD both in vitroand in vivo. Meanwhile, 20 mg/kg SCU treatment improved neurological functions and decreased the expression of astrocytes and microglia in the cortex and hippocampus of HI rats. Additionally, SCU treatment depressed the elevated levels of autophagy-related proteins and the p75 neurotrophin receptor (p75NTR) in both cortex and hippocampus. This study demonstrated the potential therapeutic efficacy of SCU by enhancing neurogenesis and restoring long-term neurological dysfunctions, which might be associated with p75NTR depletion in HI rats.


Assuntos
Animais Recém-Nascidos , Apigenina/farmacologia , Apigenina/uso terapêutico , Encéfalo/fisiopatologia , Glucuronatos/farmacologia , Glucuronatos/uso terapêutico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/genética , Neurogênese/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Ratos , Receptores de Fatores de Crescimento/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA