Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2317492121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547056

RESUMO

Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.


Assuntos
Amoeba , Linhagem Celular Tumoral , Movimento Celular , Fenômenos Físicos
2.
Dev Biol ; 510: 8-16, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403101

RESUMO

Physiological root resorption is a common occurrence during the development of deciduous teeth in children. Previous research has shown that the regulation of the inflammatory microenvironment through autophagy in DDPSCs is a significant factor in this process. However, it remains unclear why there are variations in the autophagic status of DDPSCs at different stages of physiological root resorption. To address this gap in knowledge, this study examines the relationship between the circadian clock of DDPSCs, the autophagic status, and the periodicity of masticatory behavior. Samples were collected from deciduous teeth at various stages of physiological root resorption, and DDPSCs were isolated and cultured for analysis. The results indicate that the circadian rhythm of important autophagy genes, such as Beclin-1 and LC3, and the clock gene REV-ERBα in DDPSCs, disappears under mechanical stress. Additionally, the study found that REV-ERBα can regulate Beclin-1 and LC3. Evidence suggests that mechanical stress is a trigger for the regulation of autophagy via REV-ERBα. Overall, this study highlights the importance of mechanical stress in regulating autophagy of DDPSCs via REV-ERBα, which affects the formation of the inflammatory microenvironment and plays a critical role in physiological root resorption in deciduous teeth.


Assuntos
Relógios Circadianos , Reabsorção da Raiz , Criança , Humanos , Reabsorção da Raiz/genética , Proteína Beclina-1/genética , Ritmo Circadiano/genética , Células-Tronco , Dente Decíduo
3.
Stroke ; 55(5): 1359-1369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38545773

RESUMO

BACKGROUND: The structure and staffing of hospitals greatly impact patient outcomes, with frequent changes occurring during nights and weekends. This retrospective cohort study assessed the impact of admission timing on in-hospital management and outcomes for patients with stroke receiving reperfusion therapy in China using data from a nationwide registry. METHODS: Data from patients receiving reperfusion therapy were extracted from the Chinese Stroke Center Alliance. Hospital admission time was categorized according to day/evening versus night and weekday versus weekend. Primary outcomes were in-hospital death or discharge against medical advice, hemorrhage transformation, early neurological deterioration, and major adverse cardiovascular events. Logistic regression was performed to compare in-hospital management performance and outcomes based on admission time categories. RESULTS: Overall, 42 381 patients received recombinant tissue-type plasminogen activator (r-tPA) therapy, and 5224 underwent endovascular treatment (EVT). Patients admitted during nighttime had a higher probability of receiving r-tPA therapy within 4.5 hours from onset or undergoing EVT within 6 hours from onset compared with those admitted during day/evening hours (adjusted odds ratio, 1.04 [95% CI, 1.01-1.08]; P=0.021; adjusted odds ratio, 1.72 [95% CI, 1.59-1.86]; P<0.001, respectively). However, no significant difference was observed between weekend and weekday admissions for either treatment. No notable differences were noted between weekends and weekdays or nighttime and daytime periods in door-to-needle time for r-tPA or door-to-puncture time for EVT initiation. Furthermore, weekend or nighttime admission did not have a significant effect on the primary outcomes of r-tPA therapy or EVT. Nevertheless, in patients undergoing EVT, a higher incidence of pneumonia was observed among those admitted at night compared with those admitted during day/evening hours (adjusted odds ratio, 1.22 [95% CI, 1.05-1.42]; P=0.011). CONCLUSIONS: Patients admitted at nighttime were more likely to receive r-tPA therapy or EVT within the time window recommended in the guidelines. However, patients receiving EVT admitted at night had an increased risk of pneumonia.

4.
Small ; : e2401499, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082407

RESUMO

Hepatocellular injury, a pivotal contributor to liver diseases, particularly hepatitis, lacks effective pharmacological treatments. Interleukin-22 (IL-22), crucial for liver cell survival, shows potential in treating liver diseases by regulating repair and regeneration through signal transducer and activator of transcription 3 (STAT3) activation. However, the short half-life and off-target effects limit its clinical applications. To address these issues, lipid nanoparticles are employed to deliver synthetic IL-22 mRNA (IL-22/NP) for in situ IL-22 expression in hepatocytes. The study reveals that IL-22/NP exhibits liver-targeted IL-22 expression, with increased IL-22 levels detected in the liver as early as 3 h postintravenous injection, lasting up to 96 h. Furthermore, IL-22/NP activates STAT3 signaling in an autocrine or paracrine manner to upregulate downstream factors Bcl-xL and CyclinD1, inhibiting hepatocyte apoptosis and promoting cell proliferation. The therapeutic efficacy of IL-22/NP is demonstrated in both chronic and acute liver injury models, suggesting IL-22 mRNA delivery as a promising treatment strategy for hepatitis and liver diseases involving hepatocellular injury.

5.
Int J Med Microbiol ; 314: 151596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128407

RESUMO

The opportunistic fungal pathogen Candida albicans could cause severe clinical outcomes which could be exacerbated by the scarcity of antifungals. The capacity of C. albicans to form biofilms on medical devices that are hard to eradicate, further deepen the need to develop antifungal agents. In this study, we, for the first time, showed that patchouli alcohol (PA) can inhibit the growth of multiple C. albicans strains, as well as four other Candida species, with MICs of 64 µg/mL and MFCs from 64 to 128 µg/mL. The biofilm formation and development, adhesion, yeast-to-hyphal transition and extracellular polysaccharide of C. albicans can be inhibited by PA in a concentration-dependent manner. Confocal microscopy analyses of cells treated with PA showed that PA can increase the membrane permeability and intracellular reactive oxygen species (ROS) production. In C. elegans, PA did not influence the survival below 64 µg/mL. In this study PA demonstrated antifungal and antibiofilm activity against C. albicans and our results showed the potential of developing PA to fight Candida infections.


Assuntos
Antifúngicos , Candida albicans , Sesquiterpenos , Animais , Antifúngicos/farmacologia , Caenorhabditis elegans/microbiologia , Virulência , Biofilmes , Testes de Sensibilidade Microbiana
6.
Eur J Nucl Med Mol Imaging ; 51(7): 1841-1855, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38372766

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a lethal hypovascular tumor surrounded by dense fibrosis. Albumin-bound paclitaxel and gemcitabine (AG) chemotherapy is the mainstay of PDAC treatment through depleting peritumoral fibrosis and killing tumor cells; however, it remains challenging due to the lack of a noninvasive imaging method evaluating fibrotic changes during AG chemotherapy. In this study, we developed a dual-modality imaging platform that enables noninvasive, dynamic, and quantitative assessment of chemotherapy-induced fibrotic changes through near-infrared fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI) using an extradomain B fibronectin (EDB-FN)-targeted imaging probe (ZD2-Gd-DOTA-Cy7). METHODS: The ZD2-Gd-DOTA-Cy7 probe was constructed by conjugating a peptide (Cys-TVRTSAD) to Gd-DOTA and the near-infrared dye Cy7. PDAC murine xenograft models were intravenously injected with ZD2-Gd-DOTA-Cy7 at a Gd concentration of 0.05 mmol/kg or free Cy7 and Gd-DOTA as control. The normalized tumor background ratio (TBR) on FMI and the T1 reduction ratio on MRI were quantitatively analyzed. For models receiving AG chemotherapy or saline, MRI/FMI was performed before and after treatment. Histological analyses were performed for validation. RESULTS: The ZD2-Gd-DOTA-Cy7 concentration showed a linear correlation with the fluorescence intensity and T1 relaxation time in vitro. The optimal imaging time was 30 min after injection of the ZD2-Gd-DOTA-Cy7 (0.05 mmol/kg), only half of the clinic dosage of gadolinium. Additionally, ZD2-Gd-DOTA-Cy7 generated a 1.44-fold and 1.90-fold robust contrast enhancement compared with Cy7 (P < 0.05) and Gd-DOTA (P < 0.05), respectively. For AG chemotherapy monitoring, the T1 reduction ratio and normalized TBR in the fibrotic tumor areas were significantly increased by 1.99-fold (P < 0.05) and 1.78-fold (P < 0.05), respectively, in the control group compared with those in the AG group. CONCLUSION: MRI/FMI with a low dose of ZD2-Gd-DOTA-Cy7 enables sensitive imaging of PDAC and the quantitative assessment of fibrotic changes during AG chemotherapy, which shows potential clinical applications for precise diagnosis, post-treatment monitoring, and disease management.


Assuntos
Carcinoma Ductal Pancreático , Meios de Contraste , Fibronectinas , Imageamento por Ressonância Magnética , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Camundongos , Meios de Contraste/química , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Humanos , Linhagem Celular Tumoral , Imagem Multimodal , Imagem Óptica , Compostos Organometálicos , Resultado do Tratamento , Gencitabina , Gadolínio/química , Feminino , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Desoxicitidina/farmacologia , Compostos Heterocíclicos
7.
Artigo em Inglês | MEDLINE | ID: mdl-39060372

RESUMO

PURPOSE: The incomplete resection of non-muscle invasive bladder cancer (NMIBC) augments the risk of disease recurrence. Imaging-guided surgery by molecular probes represents a pivotal strategy for mitigating postoperative recurrence. Traditional optical molecular probes, primarily composed of antibodies/peptides targeting tumour cells and fluorescent groups, are challenged by the high heterogeneity of NMIBC cells, leading to inadequate probe sensitivity. We have developed a collagen-adhesive probe (CA-P) to target the collagen within the tumour microenvironment, aiming to address the issue of insufficient imaging sensitivity. METHODS: The distribution characteristics of collagen in animal bladder cancer models and human bladder cancer tissues were explored. The synthesis and properties of CA-P were validated. In animal models, the imaging performance of CA-P was tested and compared with our previously reported near-infrared probe PLSWT7-DMI. The clinical translational potential of CA-P was assessed using human ex vivo bladder tissues. RESULTS: The distribution of collagen on the surface of tumour cells is distinct from its expression in normal urothelium. In vitro studies have demonstrated the ability of the CA-P to undergo a "sol-gel" transition upon interaction with collagen. In animal models and human ex vivo bladder specimens, CA-P exhibits superior imaging performance compared to PLSWT7-DMI. The sensitivity of this probe is 94.1%, with a specificity of 81%. CONCLUSION: CA-P demonstrates the capability to overcome tumour cell heterogeneity and enhance imaging sensitivity, exhibiting favorable imaging outcomes in preclinical models. These findings provide a theoretical basis for the application of CA-P in intraoperative navigation for NMIBC.

8.
Fish Shellfish Immunol ; 149: 109531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604479

RESUMO

In this study, we present the first cloning and identification of perforin (MsPRF1) in largemouth bass (Micropterus salmoides). The full-length cDNA of MsPRF1 spans 1572 base pairs, encoding a 58.88 kDa protein consisting of 523 amino acids. Notably, the protein contains MACPF and C2 structural domains. To evaluate the expression levels of MsPRF1 in various healthy largemouth bass tissues, real-time quantitative PCR was employed, revealing the highest expression in the liver and gut. After the largemouth bass were infected by Nocardia seriolae, the mRNA levels of MsPRF1 generally increased within 48 h. Remarkably, the recombinant protein MsPRF1 exhibits inhibitory effects against both Gram-negative and Gram-positive bacteria. Additionally, the largemouth bass showed a higher survival rate in the N. seriolae challenge following the intraperitoneal injection of rMsPRF1, with observed reductions in the tissue bacterial loads. Moreover, rMsPRF1 demonstrated a significant impact on the phagocytic and bactericidal activities of largemouth bass MO/MΦ cells, concurrently upregulating the expression of pro-inflammatory factors. These results demonstrate that MsPRF1 has a potential role in the immune response of largemouth bass against N. seriolae infection.


Assuntos
Sequência de Aminoácidos , Bass , Doenças dos Peixes , Proteínas de Peixes , Nocardia , Perforina , Filogenia , Animais , Bass/imunologia , Bass/genética , Doenças dos Peixes/imunologia , Perforina/genética , Perforina/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Nocardia/imunologia , Nocardiose/veterinária , Nocardiose/imunologia , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Imunidade Inata/genética , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
9.
Org Biomol Chem ; 22(6): 1225-1233, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38231009

RESUMO

Functionalization is a major challenge for the application of photoswitches. With the aim to develop novel bis-functional azo photoswitches with stationary photophysical properties, a series of phenolylazoindole derivatives were designed, synthesized, and characterized via NMR spectroscopy studies and high-resolution mass spectrometry (HRMS). Herein, UV/Vis and 1H NMR spectra revealed that the photostationary state (PSS) proportions for PSScis and PSStrans were 76-80% and 68-81%, respectively. Furthermore, the thermal half-lives (t1/2) of compounds A2-A4 and B2 ranged from 0.9 to 5.3 h, affected by the diverse substituents at the R1 and R2 positions. The results indicated that azo photoswitches based on the phenolylazoindole scaffold had stationary photophysical properties and wouldn't be excessively affected by modifying the functional groups. Compounds A4 and B2, which were modified with an aryl group, also exhibited fluorescence emission properties (the quantum yields of A4 and B2 were 2.32% and 13.34%) through the modification of the flexible conjugated structure (benzene) at the R2 position. Significantly, compound C1 was obtained via modification with a pharmacophore in order to acquire antifungal activities against three plant fungi, Rhizoctonia solani (R. solani), Botrytis cinerea (B. cinerea), and Fusarium graminearum (F. graminearum). Strikingly, the inhibitory activity of the cis-isomer of compound C1towards R. solani (53.3%) was significantly better than that of the trans-isomer (34.2%) at 50 µg mL-1. In order to further reveal the antifungal mechanism, molecular docking simulations demonstrated that compound C1 effectively integrates into the cavity of succinate dehydrogenase (SDH); the optically controlled cis-isomer showed a lower binding energy with SDH than that of the trans-isomer. This research confirmed that phenolylazoindole photoswitches can be appropriately applied as molecular regulatory devices and functional photoswitch molecules via bis-functionalization.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Rhizoctonia , Fungicidas Industriais/química
10.
J Biochem Mol Toxicol ; 38(4): e23684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533528

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide. Circular RNA (circRNA) circ_0088036 is a recently discovered circRNA known for its roles in rheumatoid arthritis. The study aimed to study the function of circ_0088036 in lung adenocarcinoma (LUAD). Circ_0088036 expressions were analyzed in the Gene Expression Omnibus (GEO) database. The relationship between circ_0088036 expressions and clinicopathological data of LUAD was assessed. The messenger RNA and protein levels were analyzed by quantitative real-time polymerase chain reaction and Western blot. Cell viability, apoptosis, and invasion were tested by Cell Counting Kit-8, flow cytometry, and transwell assay. The direct interaction between microRNA-203 (miR-203) and circ_0088036 or specificity protein 1 (SP1) was confirmed by dual-luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation assays. Circ_0088036 was overexpressed in LUAD from the analysis of the GEO database. The poor prognosis was found in the patients with high expressions of circ_0088036. The level of Circ_0088036 was increased in LUAD tissues and cells. In terms of function, the deletion of circ_0088036 inhibited LUAD tumorigenesis in vitro by repressing cell growth, invasion, and epithelial-mesenchymal transition (EMT). In mechanism, circ_0088036 could competitively sponge miR-203, thereby affecting the expressions of the target gene SP1. In addition, lessening of miR-203 and enlarging of SP1 could eliminate the anticancer effect of short hairpin RNA-circ_0088036 on LUAD cells. Besides, the knockout of circ_0088036 hindered the growth of xenografted tumors in vivo. Circ_0088036 promoted the LUAD cell growth, invasion, and EMT via modulating the miR-203/SP1 axis in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Linhagem Celular Tumoral , Proliferação de Células , RNA Circular
11.
BMC Psychiatry ; 24(1): 479, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951775

RESUMO

BACKGROUND: Increasing evidence suggests that leptin is involved in the pathology of autism spectrum disorder (ASD). In this study, our objective was to investigate the levels of leptin in the blood of children with ASD and to examine the overall profile of adipokine markers in ASD through meta-analysis. METHODS: Leptin concentrations were measured using an enzyme-linked immunosorbent assay (ELISA) kit, while adipokine profiling, including leptin, was performed via meta-analysis. Original reports that included measurements of peripheral adipokines in ASD patients and healthy controls (HCs) were collected from databases such as Web of Science, PubMed, and Cochrane Library. These studies were collected from September 2022 to September 2023 and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Standardized mean differences were calculated using a random effects model for the meta-analysis. Additionally, we performed meta-regression and explored heterogeneity among studies. RESULTS: Our findings revealed a significant increase in leptin levels in children with ASD compared to HCs (p = 0.0319). This result was consistent with the findings obtained from the meta-analysis (p < 0.001). Furthermore, progranulin concentrations were significantly reduced in children with ASD. However, for the other five adipokines analyzed, there were no significant differences observed between the children with ASD and HCs children. Heterogeneity was found among the studies, and the meta-regression analysis indicated that publication year and latitude might influence the results of the meta-analysis. CONCLUSIONS: These findings provide compelling evidence that leptin levels are increased in children with ASD compared to healthy controls, suggesting a potential mechanism involving adipokines, particularly leptin, in the pathogenesis of ASD. These results contribute to a better understanding of the pathology of ASD and provide new insights for future investigations.


Assuntos
Adipocinas , Transtorno do Espectro Autista , Leptina , Humanos , Transtorno do Espectro Autista/sangue , Leptina/sangue , Criança , Adipocinas/sangue , Biomarcadores/sangue
12.
Sci Technol Adv Mater ; 25(1): 2309912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333111

RESUMO

The control incorporation of metals in silica hollow spheres (SHSs) may bring new functions to silica mesoporous structures for applications including catalysis, sensing, molecular delivery, adsorption filtration, and storage. However, the strategies for incorporating metals, whether through pre-loading in the hollow interior or post-encapsulation in the mesoporous shell, still face challenges in achieving quantitative doping of various metals and preventing metal aggregation or channel blockage during usage. In this study, we explored the doping of different metals into silica hollow spheres based on the dissolution-regrowth process of silica. The process may promote the formation of more structural defects and functional silanol groups, which could facilitate the fixation of metals in the silica networks. With this simple and efficient approach, we successfully achieved the integration of ten diverse metal species into silica hollow sphere (SHS). Various single-metal, dual-metal, triple-metal, and quadruple-metal doped SHSs have been prepared, with the doped metals being stable and homogeneously dispersed in the structure. Based on the structural characterizations, we analyzed the influence of metal types on the morphology features of SHSs. The synergistic effects of multi-metals on the catalysis applications were also studied and compared.


Significance of this work: The control incorporation of metals in silica hollow spheres (SHSs) may bring new functions to silica mesoporous structures for applications including catalysis, sensing, molecular delivery, adsorption filtration, and storage. The incorporation of metals within SHSs is always either at the interior core or in the porous shells. The former method mainly utilizes metal nanoparticles as the core and regulates the synthesis of outer porous silica shells. The latter is primarily driven by the capillary force or intermolecular interactions with surface ligands to facilitate the post-loading of metal species in porous silica structures. The main problems associated with metal-doped SHSs include 1) controlled loading of different metals with a homogeneous distribution; 2) fixation of metal species in the structures to prevent aggregation during usage, particularly at high temperatures; 3) pore channel blockage after metal loading, which may hinder the loading of other external molecules. In this work, we developed the dissolution-regrowth of silica strategy for integrating various metals in porous SHSs (M@SHSs) by a one-pot hydrothermal process without using any anchoring molecules. Unlike other sol-gel formations, the growth rate of silica in this process is greatly reduced. It thus may bring more possibilities to introduce external metals within the silica frameworks instead of in the porous channels. By regulating the addition of metal salts in the silica nanoparticles dispersions, we have successfully synthesized stable and highly homogeneous single-metal, dual-metal, triple-metal, and quadruplemetal doped SHSs. Based on the structural characterizations, we analyzed the influence of metal types on the morphology features of SHSs. The synergistic effects of multi-metals on the catalysis applications were also studied and compared. Our results offer a facile and effective strategy for preparing multi-metals as nano-catalysts. Through proper design of the doped metals in SHSs, the structures should find more applications in catalysis, drug delivery, and adsorption with unique and enhanced properties.

13.
J Integr Plant Biol ; 66(7): 1385-1407, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38818952

RESUMO

The heading date of rice is a crucial agronomic characteristic that influences its adaptability to different regions and its productivity potential. Despite the involvement of WRKY transcription factors in various biological processes related to development, the precise mechanisms through which these transcription factors regulate the heading date in rice have not been well elucidated. The present study identified OsWRKY11 as a WRKY transcription factor which exhibits a pivotal function in the regulation of the heading date in rice through a comprehensive screening of a clustered regularly interspaced palindromic repeats (CRISPR) ‒ CRISPR-associated nuclease 9 mutant library that specifically targets the WRKY genes in rice. The heading date of oswrky11 mutant plants and OsWRKY11-overexpressing plants was delayed compared with that of the wild-type plants under short-day and long-day conditions. Mechanistic investigation revealed that OsWRKY11 exerts dual effects on transcriptional promotion and suppression through direct and indirect DNA binding, respectively. Under normal conditions, OsWRKY11 facilitates flowering by directly inducing the expression of OsMADS14 and OsMADS15. The presence of elevated levels of OsWRKY11 protein promote formation of a ternary protein complex involving OsWRKY11, Heading date 1 (Hd1), and Days to heading date 8 (DTH8), and this complex then suppresses the expression of Ehd1, which leads to a delay in the heading date. Subsequent investigation revealed that a mild drought condition resulted in a modest increase in OsWRKY11 expression, promoting heading. Conversely, under severe drought conditions, a significant upregulation of OsWRKY11 led to the suppression of Ehd1 expression, ultimately causing a delay in heading date. Our findings uncover a previously unacknowledged mechanism through which the transcription factor OsWRKY11 exerts a dual impact on the heading date by directly and indirectly binding to the promoters of target genes.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Fatores de Transcrição , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mutação/genética , Flores/genética , Flores/metabolismo , Plantas Geneticamente Modificadas/genética
14.
Entropy (Basel) ; 26(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38920516

RESUMO

Vibration monitoring and analysis are important methods in wind turbine gearbox fault diagnosis, and determining how to extract fault characteristics from the vibration signal is of primary importance. This paper presents a fault diagnosis approach based on modified hierarchical fluctuation dispersion entropy of tan-sigmoid mapping (MHFDE_TANSIG) and northern goshawk optimization-support vector machine (NGO-SVM) for wind turbine gearboxes. The tan-sigmoid (TANSIG) mapping function replaces the normal cumulative distribution function (NCDF) of the hierarchical fluctuation dispersion entropy (HFDE) method. Additionally, the hierarchical decomposition of the HFDE method is improved, resulting in the proposed MHFDE_TANSIG method. The vibration signals of wind turbine gearboxes are analyzed using the MHFDE_TANSIG method to extract fault features. The constructed fault feature set is used to intelligently recognize and classify the fault type of the gearboxes with the NGO-SVM classifier. The fault diagnosis methods based on MHFDE_TANSIG and NGO-SVM are applied to the experimental data analysis of gearboxes with different operating conditions. The results show that the fault diagnosis model proposed in this paper has the best performance with an average accuracy rate of 97.25%.

16.
iScience ; 27(5): 109062, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38660408

RESUMO

Manganese has been used in tumor imaging for their ability to provide T1-weighted MRI signal. Recent research find Mn2+ can induce activation of the stimulator of interferon gene (STING) pathway to create an active and favorable tumor immune microenvironment. However, the direct injection of Mn2+ often results in toxicity. In this study, we developed an RGD targeted magnetic ferrite nanoparticle (RGD-MnFe2O4) to facilitate tumor targeted imaging and improve tumor immunotherapy. Magnetic resonance imaging and fluorescence molecular imaging were performed to monitor its in vivo biodistribution. We found that RGD-MnFe2O4 showed active tumor targeting and longer accumulation at tumor sites. Moreover, RGD-MnFe2O4 can activate STING pathway with low toxicity to enhance the PD-L1 expression. Furthermore, combining RGD-MnFe2O4 and anti-PD-L1 antibody (aPD-L1) can treat several types of immunogenic tumors through promoting the accumulation of tumor-infiltrating cytotoxic T cells. In general, our study provides a promising new strategy for the targeted and multifunctional theranostic nanoparticle for the improvement of tumor immunotherapy.

17.
Microorganisms ; 12(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674775

RESUMO

The probiotic potential of Lactobacillus helveticus LH10, derived from vinegar Pei, a brewing mixture, was assessed through genotype and phenotype analyses. The assembled genome was comprised of 1,810,276 bp and predicted a total of 2044 coding sequences (CDSs). Based on the whole genome sequence analysis, two bacteriocin gene clusters were identified, while no pathogenic genes were detected. In in vitro experiments, L. helveticus LH10 exhibited excellent tolerance to simulated gastrointestinal fluid, a positive hydrophobic interaction with xylene, and good auto-aggregation properties. Additionally, this strain demonstrated varying degrees of resistance to five antibiotics, strong antagonistic activity against four tested pathogens, and no hemolytic activity. Therefore, L. helveticus LH10 holds great promise as a potential probiotic candidate deserving further investigation for its beneficial effects on human health.

18.
Neural Netw ; 173: 106150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330747

RESUMO

Accurate short-term load forecasting (STLF) is crucial for maintaining reliable and efficient operations within power systems. With the continuous increase in volume and variety of energy data provided by renewables, electric vehicles and other sources, long short-term memory (LSTM) has emerged as an attractive approach for STLF due to its superiorities in extracting the dynamic temporal information. However, traditional LSTM training methods rely on stochastic gradient methods that have several limitations. This paper presents an innovative LSTM optimization framework via the alternating direction method of multipliers (ADMM) for STLF, dubbed ADMM-LSTM. Explicitly, we train the LSTM network distributedly by the ADMM algorithm. More specifically, we introduce a novel approach to update the parameters in the ADMM-LSTM framework, using a backward-forward order, significantly reducing computational time. Additionally, within the proposed framework, the solution to each subproblem is achieved by utilizing either the proximal point algorithm or local linear approximation, preventing the need for supplementary numerical solvers. This approach confers several advantages, including avoiding issues associated with exploding or vanishing gradients, thanks to the inherent gradient-free characteristics of ADMM-LSTM. Furthermore, we offer a comprehensive theoretical analysis that elucidates the convergence properties inherent to the ADMM-LSTM framework. This analysis provides a deeper understanding of the algorithm's convergence behavior. Lastly, the efficacy of our method is substantiated through a series of experiments conducted on two publicly available datasets. The experimental results demonstrate the superior performance of our approach when compared to existing methods.


Assuntos
Algoritmos , Memória de Longo Prazo , Previsões
19.
Exp Gerontol ; 188: 112395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452990

RESUMO

BACKGROUND: Chronic Post-Stroke Fatigue (PSF) is a common and persistent complications among ischemic stroke survivors. The serum glycated hemoglobin (HbA1c) level, as it is known has emerged as a critical risk factor for Acute Ischemic Stroke (AIS) and post-stroke cognitive and emotional impairment. However, no studies have been conducted on the link between HbA1c and PSF. Therefore, this study aims to estimate the relationship between HbA1c and PSF in the chronic phase. METHODS: A longitudinal study was conducted on 559 patients diagnosed with their first AIS episode and admitted to Suining Central Hospital within three days after onset. All patients were examined for serum HbA1c, blood glucose levels and routine blood biochemical indicators at admission. The Fatigue Severity Scale (FSS) was employed to assess fatigue symptoms at six months post-stroke. Multivariate logistic regression and smooth curve fitting were used to analyze the relationship between admission HbA1c, blood glucose levels, discharge blood glucose and PSF, and the predictive value of HbA1c on PSF was assessed using a segmented linear regression model. RESULTS: 189(33.8 %)of the 559 patients included in the study, reported PSF at six-month follow-up. Compared with the non-PSF group, the PSF group displayed significantly higher levels of HbA1c (7.8 ± 3.0 vs 6.5 ± 2.0 %, P < 0.001), admission blood glucose (7.8 ± 3.8 vs 7.1 ± 3.5 mmol/L, P = 0.041), and discharge blood glucose (6.3 ± 1.6 vs 5.8 ± 1.2 mmol/L, P < 0.001). The dose-response relationship among admission HbA1c, blood glucose, discharge blood glucose and PSF showed that HbA1c level is positively and non-linearly related to the risk of PSF. A linear positive correlation is noted between PSF and discharge blood glucose levels, while no significant correlation was observed for the blood glucose levels upon admission. CONCLUSIONS: Higher HbA1c levels at admission were independently associated with the risk of chronic PSF, the correlation between blood glucose and PSF showed significant variability, HbA1c may serve as a more stable risk factor in predicting the occurrence of chronic PSF and long-term active glycemic management may have a favorable impact on chronic PSF after AIS.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Hemoglobinas Glicadas , AVC Isquêmico/complicações , Glicemia , Isquemia Encefálica/complicações , Estudos Longitudinais , Acidente Vascular Cerebral/complicações , Fadiga/diagnóstico , Fadiga/etiologia
20.
Commun Biol ; 7(1): 362, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521872

RESUMO

Muscarinic acetylcholine receptor M3 (M3) and its downstream effector Gq/11 are critical drug development targets due to their involvement in physiopathological processes. Although the structure of the M3-miniGq complex was recently published, the lack of information on the intracellular loop 3 (ICL3) of M3 and extensive modification of Gαq impedes the elucidation of the molecular mechanism of M3-Gq coupling under more physiological condition. Here, we describe the molecular mechanism underlying the dynamic interactions between full-length wild-type M3 and Gq using hydrogen-deuterium exchange mass spectrometry and NanoLuc Binary Technology-based cell systems. We propose a detailed analysis of M3-Gq coupling through examination of previously well-defined binding interfaces and neglected regions. Our findings suggest potential binding interfaces between M3 and Gq in pre-assembled and functionally active complexes. Furthermore, M3 ICL3 negatively affected M3-Gq coupling, and the Gαq AHD underwent unique conformational changes during M3-Gq coupling.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Receptores Muscarínicos , Receptores Muscarínicos/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA