Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Phytopathology ; 113(12): 2174-2186, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36935376

RESUMO

Erwinia amylovora is a relatively homogeneous species with low genetic diversity at the nucleotide level. However, phenotypic differences and genomic structural variations among E. amylovora strains have been documented. In this study, we identified 10 large chromosomal inversion (LCI) types in the Spiraeoideae-infecting (SI) E. amylovora strains by combining whole genome sequencing and PCR-based molecular markers. It was found that LCIs were mainly caused by homologous recombination events among seven rRNA operons (rrns) in SI E. amylovora strains. Although ribotyping results identified inter- and intra-variations in the internal transcribed spacer (ITS1 and ITS2) regions among rrns, LCIs tend to occur between rrns transcribed in the opposite directions and with the same tRNA content (tRNA-Glu or tRNA-Ile/Ala) in ITS1. Based on the LCI types, physical/estimated replichore imbalance (PRI/ERI) was examined and calculated. Among the 117 SI strains evaluated, the LCI types of Ea1189, CFBP1430, and Ea273 were the most common, with ERI values at 1.31, 7.87, and 4.47°, respectively. These three LCI types had worldwide distribution, whereas the remaining seven LCI types were restricted to North America (or certain regions of the United States). Our results indicated ongoing chromosomal recombination events in the SI E. amylovora population and showed that LCI events are mostly symmetrical, keeping the ERI less than 15°. These findings provide initial evidence about the prevalence of certain LCI types in E. amylovora strains, how LCI occurs, and its potential evolutionary advantage and history, which might help track the movement of the pathogen.


Assuntos
Erwinia amylovora , Erwinia , Rosaceae , Erwinia amylovora/genética , Inversão Cromossômica/genética , Doenças das Plantas , RNA de Transferência , Erwinia/genética
2.
Appl Environ Microbiol ; 87(15): e0004821, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34020936

RESUMO

Crop-associated microbiota are a key factor affecting host health and productivity. Most crops are grown within heterogeneous landscapes, and interactions between management practices and landscape context often affect plant and animal biodiversity in agroecosystems. However, whether these same factors typically affect crop-associated microbiota is less clear. Here, we assessed whether orchard management strategies and landscape context affected bacterial and fungal communities in pear (Pyrus communis) flowers. We found that bacteria and fungi responded differently to management schemes. Organically certified orchards had higher fungal diversity in flowers than conventional or bio-based integrated pest management (IPM) orchards, but organic orchards had the lowest bacterial diversity. Orchard management scheme also best predicted the distribution of several important bacterial and fungal genera that either cause or suppress disease; organic and bio-based IPM best explained the distributions of bacterial and fungal genera, respectively. Moreover, patterns of bacterial and fungal diversity were affected by interactions between management, landscape context, and climate. When examining the similarity of bacterial and fungal communities across sites, both abundance- and taxon-related turnovers were mediated primarily by orchard management scheme and landscape context and, specifically, the amount of land in cultivation. Our study reveals local- and landscape-level drivers of floral microbiome structure in a major fruit crop, providing insights that can inform microbiome management to promote host health and high-yielding quality fruit. IMPORTANCE Proper crop management during bloom is essential for producing disease-free tree fruit. Tree fruits are often grown in heterogeneous landscapes; however, few studies have assessed whether landscape context and crop management affect the floral microbiome, which plays a critical role in shaping plant health and disease tolerance. Such work is key for identification of tactics and/or contexts where beneficial microbes proliferate and pathogenic microbes are limited. Here, we characterize the floral microbiome of pear crops in Washington State, where major production occurs in intermountain valleys and basins with variable elevation and microclimates. Our results show that both local-level (crop management) and landscape-level (habitat types and climate) factors affect floral microbiota but in disparate ways for each kingdom. More broadly, these findings can potentially inform microbiome management in orchards for promotion of host health and high-quality yields.


Assuntos
Agricultura/métodos , Flores/microbiologia , Microbiota , Pyrus/microbiologia , Bactérias/classificação , Bactérias/genética , Produtos Agrícolas/microbiologia , DNA Bacteriano , DNA Fúngico , Fungos/classificação , Fungos/genética , Washington
3.
Phytopathology ; 111(12): 2195-2202, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33961495

RESUMO

In sweet cherry (Prunus avium), infection by 'Candidatus Phytoplasma pruni' results in small fruit with poor color and taste, rendering the fruit unmarketable. Yet the disease pathology is poorly understood, particularly at the cultivar level. Therefore, in this study we examined the physiological effects of Ca. P. pruni infection across a range of cultivars and locations in eastern Washington. We found that infection could be separated into early and established stages based on pathogen titer, which correlated with disease severity, including fruit size, color, and sugar and metabolite content. Furthermore, we observed that the effects of early-stage infections were largely indistinguishable from healthy, uninfected plants. Cultivar- and location-specific disease outcomes were observed with regard to size, color, sugar content, and citric acid content. This study presents the first in-depth assessment of X-disease symptoms and biochemical content of fruit from commercially grown sweet cherry cultivars known to be infected with Ca. P. pruni.


Assuntos
Phytoplasma , Prunus avium , Prunus , Frutas , Doenças das Plantas
4.
J Econ Entomol ; 116(4): 1249-1260, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37341151

RESUMO

Pear psylla, Cacopsylla pyricola (Förster), is the most economically challenging pest of commercial pears in Washington and Oregon, the top producers of pears in the United States. The objective of this study was to quantify economic injury levels and thresholds for pear psylla. We used the relationship between pear psylla adult and nymph densities, and fruit downgraded due to psylla honeydew marking to identify injury levels. We calculated economic injury levels using the cost of downgraded fruit and average management costs (spray materials and labor). Using economic injury levels, we determined economic thresholds for pear psylla, which include predicted pest population growth, natural enemy predation, and anticipated delays between when pest populations are measured and when managers apply interventions. Economic thresholds generated by this study were 0.1-0.3 second-generation nymphs per leaf and 0.2-0.8 third-generation nymphs per leaf depending on predicted price and yield for insecticide applications at 1,300 pear psylla degree days in the second generation and 2,600 pear psylla degree days in the third generation. Natural enemy inaction thresholds identified by this study were 6 Deraeocoris brevis or 3 Campylomma verbasci immatures per 30 trays or 2 earwigs per trap for third-generation optional insecticide applications.


Assuntos
Hemípteros , Heterópteros , Inseticidas , Pyrus , Animais , Ninfa , Controle de Pragas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA