Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121698, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968890

RESUMO

In China, over 65% of human activities are concentrated in cities, resulting in a conflict between the supply and demand of ecosystem services (ESs). To alleviate this problem, many cities have adopted eco-friendly development modes, however, the effectiveness of these models in reducing ESs supply-demand conflicts has not been comprehensively reviewed, and the human and natural drivers behind these relationship shifts remain unclear. To bridge this gap, this study analyzed the shifts in the relationships between supply and demand of ESs across China from 2010 to 2020 at a city level, as well as identified the human and natural drivers behind them. Firstly, the InVEST models were integrated with socioeconomic data to evaluate the supply and demand distribution for three pivotal ESs: water yield (WY), habitat quality (HQ), and soil retention (SR). Then, a four-quadrant diagram approach was proposed to enhance the analysis of their spatiotemporal relationships. Furthermore, random forest models were employed to examine the drivers of the shifts in these relationships. The results showed that WY and SR services witnessed growth until 2015, and then receded, while HQ saw a modest decline from 2010 to 2020. Spatial synergies in the supply and demand of ESs were primarily observed in the southern cities, with a significant northward extension by 2020. From a temporal perspective, the percentage of cities achieving coordination in WY and SR services increased from 32.6% to 57.3%, respectively, in the 2010-2015 period to 42.4% and 63.3% between 2015 and 2020, meanwhile, HQ service conflicts diminished from 58.7% to 53.5%. The changes in socioeconomic and land use factors contributed to 64.3%, 36.1%, and 33.3% of the shifts in the supply-demand relationship for HQ, WY, and SR services, respectively. Our analysis highlights the potential of human-driven ecological management to enhance the balance of this relationship. It can support the design of city-specific policies that foster a balance between ecological processes and socio-economic development.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Humanos , Cidades , Solo
2.
J Environ Manage ; 344: 118540, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459812

RESUMO

There is unequal spatial distribution of resource endowment, population density, industrial structure, and economic development with diverse differences in labor, energy, and capital productivities in China. However, previous studies paid little attention to the determinants of CO2 transfers embodied in electricity trade. In this study, we use both the absolute and comparative advantage theories to reveal the determinants of embodied CO2 transfers through electricity trade within China. Results show that China's electricity sector has higher labor productivity but lower asset efficiency and energy productivity than that of mining and manufacturing sectors. The large-scale electricity trade alleviates the shortage of electricity supply in developed regions by outsourcing to the less-developed regions, reduces the unequal spatial distribution of coal and natural gas reserves, and changes CO2 flow embodied in power grid. Econometric analysis shows that coal reserve contributes to the increase of embodied CO2 emission, while natural gas reduces the embodied CO2 emission. The regional differences in the opportunity cost of labor productivity of non-electricity sector are the dominant factor of the embodied CO2 transfers through electricity trade within China, while asset efficiency and energy productivity are not significant in the regressions. Our findings could provide details about China's power grid expansion when confronting climate mitigation in the future.


Assuntos
Dióxido de Carbono , Gás Natural , Dióxido de Carbono/análise , Indústrias , China , Carvão Mineral , Carbono/análise
3.
iScience ; 26(2): 106035, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36818288

RESUMO

Electricity sector is the largest CO2 emitter and water user in China's industrial sectors. The low-carbon transition of China's electricity sector reduces its cooling water consumption. Here we firstly quantify CO2 emission and virtual water embodied in electricity trade with Quasi-Input-Output model. Then, we analyze the impacts of energy substitution, efficiency improvement, and electricity trade on water-saving co-benefits of CO2 reduction with the differences between the baseline scenario and counterfactual scenario. Results show that the low-carbon transition contributes to water-saving in China's electricity sector. Virtual water and embodied CO2 have relatively decoupled from electricity trade since 2012. Water-saving (+10.4% yr-1) outweighed CO2 reduction (+8.4% yr-1) through energy substitution and efficiency improvement in the 'new normal' stage. Our work emphasizes the need to integrate water-saving co-benefits of CO2 reduction into electricity system planning and highlights the challenges to facilitate coordinated development of the electricity-water nexus in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA