Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Molecules ; 27(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889337

RESUMO

Dodonaea viscosa is a medicinal plant which has been used to treat various diseases in humans. However, the anti-insect activity of extracts from D. viscosa has not been evaluated. Here, we found that the total saponins from D. viscosa (TSDV) had strong antifeedant and growth inhibition activities against 4th-instar larvae of Spodoptera litura. The median antifeeding concentration (AFC50) value of TSDV on larvae was 1621.81 µg/mL. TSDV affected the detoxification enzyme system of the larvae and also exerted antifeedant activity possibly through targeting the γ-aminobutyric acid (GABA) system. The AFC50 concentration, the carboxylesterase activity, glutathione S-transferases activity, and cytochrome P450 content increased to 258%, 205%, and 215%, respectively, and likewise the glutamate decarboxylase activity and GABA content to 195% and 230%, respectively, in larvae which fed on TSDV. However, D. viscosa saponin A (DVSA) showed better antifeedant activity and growth inhibition activity in larvae, compared to TSDV. DVSA also exerted their antifeedant activity possibly through targeting the GABA system and subsequently affected the detoxification enzyme system. Further, DVSA directly affected the medial sensillum and the lateral sensillum of the 4th-instar larvae. Stimulation of Spodoptera litura. with DVSA elicited clear, consistent, and robust excitatory responses in a single taste cell.


Assuntos
Inseticidas , Sapindaceae , Saponinas , Animais , Humanos , Larva , Saponinas/farmacologia , Sementes , Spodoptera , Ácido gama-Aminobutírico
2.
J Environ Sci Health B ; 57(1): 54-61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34983315

RESUMO

Acetylcholinesterase (AChE) is an enzyme that catalyzes acetylcholine into choline and acetic acid. Conventional pesticides, including organophosphates and carbamates target and inhibit the activity of AChE. To obtain more pesticide precursors that meet the safety requirements, more than 200 compounds were screened. Tirotundin and parthenolide identified as potential neurotoxins to nematodes were isolated from Tithonia diversifolia and Chrysanthemum parthenium, respectively. Their IC50 values were 6.89 ± 0.30 and 5.51 ± 0.23 µg/mL, respectively against the AChE isolated from Caenorhabditis elegans. AChE was inhibited in a dose-dependent manner using the two compounds. And the Lineweaver-Burk and Dixon plots indicated that tirotundin and parthenolide were reversible inhibitors against AChE, both inhibiting AChE in a mixed-type competitive manner and demonstrating these compounds may possess dual binding site AChE inhibitors. LC50 values of tirotundin and parthenolide against C. elegans were 9.16 ± 0.21 and 7.23 ± 0.48 µg/mL, respectively. These results provide a certain theoretical basis for the development and utilization of novel pesticides.


Assuntos
Acetilcolinesterase , Praguicidas , Acetilcolinesterase/metabolismo , Animais , Caenorhabditis elegans , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Lactonas , Praguicidas/toxicidade , Sesquiterpenos , Tanacetum parthenium/metabolismo , Tithonia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA