RESUMO
The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu_x) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54_-0.31;+0.33(stat)-0.34+0.36(syst)x10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Deltam2=7.59_-0.21;+0.19x10(-5) eV2 and theta=34.4_-1.2;+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.
RESUMO
Solar neutrinos from (8)B decay have been detected at the Sudbury Neutrino Observatory via the charged current (CC) reaction on deuterium and the elastic scattering (ES) of electrons. The flux of nu(e)'s is measured by the CC reaction rate to be straight phi(CC)(nu(e)) = 1.75 +/- 0.07(stat)(+0.12)(-0.11)(syst) +/- 0.05(theor) x 10(6) cm(-2) s(-1). Comparison of straight phi(CC)(nu(e)) to the Super-Kamiokande Collaboration's precision value of the flux inferred from the ES reaction yields a 3.3 sigma difference, assuming the systematic uncertainties are normally distributed, providing evidence of an active non- nu(e) component in the solar flux. The total flux of active 8B neutrinos is determined to be 5.44+/-0.99 x 10(6) cm(-2) s(-1).
RESUMO
Observations of neutral-current nu interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current (NC), elastic scattering, and charged current reactions and assuming the standard 8B shape, the nu(e) component of the 8B solar flux is phis(e) = 1.76(+0.05)(-0.05)(stat)(+0.09)(-0.09)(syst) x 10(6) cm(-2) s(-1) for a kinetic energy threshold of 5 MeV. The non-nu(e) component is phi(mu)(tau) = 3.41(+0.45)(-0.45)(stat)(+0.48)(-0.45)(syst) x 10(6) cm(-2) s(-1), 5.3sigma greater than zero, providing strong evidence for solar nu(e) flavor transformation. The total flux measured with the NC reaction is phi(NC) = 5.09(+0.44)(-0.43)(stat)(+0.46)(-0.43)(syst) x 10(6) cm(-2) s(-1), consistent with solar models.
RESUMO
The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8B spectrum, the night minus day rate is 14.0%+/-6.3%(+1.5%)(-1.4%) of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the nu(e) asymmetry is found to be 7.0%+/-4.9%(+1.3%)(-1.2%). A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the large mixing angle solution.
RESUMO
The Sudbury Neutrino Observatory has precisely determined the total active (nu(x)) 8B solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability. The measurements were made with dissolved NaCl in heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27(stat)+/-0.38(syst) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Deltam(2)=7.1(+1.2)(-0.6) x 10(-5) eV(2) and theta=32.5(+2.4)(-2.3) degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.
RESUMO
Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to "invisible" modes, such as n-->3nu. The analysis was based on a search for gamma rays from the deexcitation of the residual nucleus that would result from the disappearance of either a proton or neutron from 16O. A limit of tau(inv)>2 x 10(29) yr is obtained at 90% confidence for either neutron- or proton-decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton-decay modes and 400 times more stringent than similar neutron modes.