Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Annu Rev Microbiol ; 75: 695-718, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351792

RESUMO

Possibly the last discovery of a previously unknown major ecosystem on Earth was made just over half a century ago, when researchers found teaming communities of animals flourishing two and a half kilometers below the ocean surface at hydrothermal vents. We now know that these highly productive ecosystems are based on nutritional symbioses between chemosynthetic bacteria and eukaryotes and that these chemosymbioses are ubiquitous in both deep-sea and shallow-water environments. The symbionts are primary producers that gain energy from the oxidation of reduced compounds, such as sulfide and methane, to fix carbon dioxide or methane into biomass to feed their hosts. This review outlines how the symbiotic partners have adapted to living together. We first focus on the phylogenetic and metabolic diversity of these symbioses and then highlight selected research directions that could advance our understanding of the processes that shaped the evolutionary and ecological success of these associations.


Assuntos
Ecossistema , Fontes Hidrotermais , Animais , Bactérias/genética , Bactérias/metabolismo , Filogenia , Simbiose/fisiologia
2.
Proc Biol Sci ; 288(1957): 20211044, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34403628

RESUMO

How and when symbionts are acquired by their animal hosts has a profound impact on the ecology and evolution of the symbiosis. Understanding symbiont acquisition is particularly challenging in deep-sea organisms because early life stages are so rarely found. Here, we collected early developmental stages of three deep-sea bathymodioline species from different habitats to identify when these acquire their symbionts and how their body plan adapts to a symbiotic lifestyle. These mussels gain their nutrition from chemosynthetic bacteria, allowing them to thrive at deep-sea vents and seeps worldwide. Correlative imaging analyses using synchrotron-radiation based microtomography together with light, fluorescence and electron microscopy revealed that the pediveliger larvae were aposymbiotic. Symbiont colonization began during metamorphosis from a planktonic to a benthic lifestyle, with the symbionts rapidly colonizing first the gills, the symbiotic organ of adults, followed by all other epithelia of their hosts. Once symbiont densities in plantigrades reached those of adults, the host's intestine changed from the looped anatomy typical for bivalves to a straightened form. Within the Mytilidae, this morphological change appears to be specific to Bathymodiolus and Gigantidas, and is probably linked to the decrease in the importance of filter feeding when these mussels switch to gaining their nutrition largely from their symbionts.


Assuntos
Mytilidae , Animais , Bactérias , Ecossistema , Brânquias , Simbiose
3.
Mol Microbiol ; 103(2): 242-252, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27741568

RESUMO

In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid analysis, RNA analysis, and electron cryotomography, it was shown that M. sedimenti undergoes discrete cellular shifts in response to methane starvation, including changes in headgroup-specific fatty acid saturation levels, and reductions in cytoplasmic storage granules. Methane starvation is associated with a significant increase in the abundance of gene transcripts pertinent to methane oxidation. Methane reintroduction to starved cells stimulates a rapid, transient extracellular accumulation of methanol, revealing a way in which methane-derived carbon may be routed to community members. This study provides new understanding of methanotrophic responses to methane starvation and recovery, and lays the initial groundwork to develop Methyloprofundus as a model chemosynthesizing bacterium from the deep sea.


Assuntos
Metano/metabolismo , Methylococcaceae/metabolismo , Lipídeos de Membrana/metabolismo , Methylococcaceae/citologia
4.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701560

RESUMO

Symbioses between eukaryotes and sulfur-oxidizing (thiotrophic) bacteria have convergently evolved multiple times. Although well described in at least eight classes of metazoan animals, almost nothing is known about the evolution of thiotrophic symbioses in microbial eukaryotes (protists). In this study, we characterized the symbioses between mouthless marine ciliates of the genus Kentrophoros, and their thiotrophic bacteria, using comparative sequence analysis and fluorescence in situ hybridization. Ciliate small-subunit rRNA sequences were obtained from 17 morphospecies collected in the Mediterranean and Caribbean, and symbiont sequences from 13 of these morphospecies. We discovered a new Kentrophoros morphotype where the symbiont-bearing surface is folded into pouch-like compartments, illustrating the variability of the basic body plan. Phylogenetic analyses revealed that all investigated Kentrophoros belonged to a single clade, despite the remarkable morphological diversity of these hosts. The symbionts were also monophyletic and belonged to a new clade within the Gammaproteobacteria, with no known cultured representatives. Each host morphospecies had a distinct symbiont phylotype, and statistical analyses revealed significant support for host-symbiont codiversification. Given that these symbioses were collected from two widely separated oceans, our results indicate that symbiotic associations in unicellular hosts can be highly specific and stable over long periods of evolutionary time.


Assuntos
Cilióforos/classificação , Cilióforos/microbiologia , Gammaproteobacteria/classificação , Simbiose , Animais , Região do Caribe , Hibridização in Situ Fluorescente , Mar Mediterrâneo , Filogenia
5.
Nature ; 476(7359): 176-80, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21833083

RESUMO

The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.


Assuntos
Bivalves/microbiologia , Ecossistema , Metabolismo Energético , Fontes Termais/química , Hidrogênio/metabolismo , Simbiose/fisiologia , Animais , Oceano Atlântico , Bivalves/efeitos dos fármacos , Bivalves/metabolismo , Relação Dose-Resposta a Droga , Sedimentos Geológicos/química , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/microbiologia , Fontes Termais/microbiologia , Hidrogênio/análise , Hidrogênio/farmacologia , Hidrogenase/genética , Hidrogenase/metabolismo , Dados de Sequência Molecular , Oxirredução , Pressão Parcial , Água do Mar/química , Água do Mar/microbiologia , Sulfetos/metabolismo , Enxofre/metabolismo , Simbiose/efeitos dos fármacos , Simbiose/genética
6.
BMC Genomics ; 17(1): 942, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27871231

RESUMO

BACKGROUND: The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. Here, we generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. RESULTS: Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, most likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm's symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. Additionally, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins. CONCLUSIONS: We show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. Our results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.


Assuntos
Adaptação Biológica/genética , Imunidade Inata/genética , Oligoquetos/genética , Oligoquetos/metabolismo , Proteoma , Simbiose/genética , Transcriptoma , Adaptação Biológica/imunologia , Sequência de Aminoácidos , Animais , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Modelos Biológicos , Oligoquetos/imunologia , Proteômica/métodos , Receptores de Reconhecimento de Padrão/metabolismo , Simbiose/imunologia
7.
Appl Environ Microbiol ; 82(1): 62-70, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26475101

RESUMO

Fluorescence in situ hybridization (FISH) has become a vital tool for environmental and medical microbiology and is commonly used for the identification, localization, and isolation of defined microbial taxa. However, fluorescence signal strength is often a limiting factor for targeting all members in a microbial community. Here, we present the application of a multilabeled FISH approach (MiL-FISH) that (i) enables the simultaneous targeting of up to seven microbial groups using combinatorial labeling of a single oligonucleotide probe, (ii) is applicable for the isolation of unfixed environmental microorganisms via fluorescence-activated cell sorting (FACS), and (iii) improves signal and imaging quality of tissue sections in acrylic resin for precise localization of individual microbial cells. We show the ability of MiL-FISH to distinguish between seven microbial groups using a mock community of marine organisms and its applicability for the localization of bacteria associated with animal tissue and their isolation from host tissues using FACS. To further increase the number of potential target organisms, a streamlined combinatorial labeling and spectral imaging-FISH (CLASI-FISH) concept with MiL-FISH probes is presented here. Through the combination of increased probe signal, the possibility of targeting hard-to-detect taxa and isolating these from an environmental sample, the identification and precise localization of microbiota in host tissues, and the simultaneous multilabeling of up to seven microbial groups, we show here that MiL-FISH is a multifaceted alternative to standard monolabeled FISH that can be used for a wide range of biological and medical applications.


Assuntos
Bactérias/genética , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/genética , Bactérias/citologia , Citometria de Fluxo , Sondas de Oligonucleotídeos/química , Coloração e Rotulagem
8.
Mol Ecol ; 25(13): 3203-23, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26826340

RESUMO

The level of integration between associated partners can range from ectosymbioses to extracellular and intracellular endosymbioses, and this range has been assumed to reflect a continuum from less intimate to evolutionarily highly stable associations. In this study, we examined the specificity and evolutionary history of marine symbioses in a group of closely related sulphur-oxidizing bacteria, called Candidatus Thiosymbion, that have established ecto- and endosymbioses with two distantly related animal phyla, Nematoda and Annelida. Intriguingly, in the ectosymbiotic associations of stilbonematine nematodes, we observed a high degree of congruence between symbiont and host phylogenies, based on their ribosomal RNA (rRNA) genes. In contrast, for the endosymbioses of gutless phallodriline annelids (oligochaetes), we found only a weak congruence between symbiont and host phylogenies, based on analyses of symbiont 16S rRNA genes and six host genetic markers. The much higher degree of congruence between nematodes and their ectosymbionts compared to those of annelids and their endosymbionts was confirmed by cophylogenetic analyses. These revealed 15 significant codivergence events between stilbonematine nematodes and their ectosymbionts, but only one event between gutless phallodrilines and their endosymbionts. Phylogenetic analyses of 16S rRNA gene sequences from 50 Cand. Thiosymbion species revealed seven well-supported clades that contained both stilbonematine ectosymbionts and phallodriline endosymbionts. This closely coupled evolutionary history of marine ecto- and endosymbionts suggests that switches between symbiotic lifestyles and between the two host phyla occurred multiple times during the evolution of the Cand. Thiosymbion clade, and highlights the remarkable flexibility of these symbiotic bacteria.


Assuntos
Anelídeos/microbiologia , Evolução Biológica , Gammaproteobacteria/genética , Nematoides/microbiologia , Simbiose , Animais , DNA Bacteriano/genética , Marcadores Genéticos , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Proc Natl Acad Sci U S A ; 110(9): 3229-36, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23391737

RESUMO

In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal-bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other's genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal-bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.


Assuntos
Bactérias/metabolismo , Disciplinas das Ciências Biológicas , Animais , Evolução Biológica , Ecossistema , Genoma , Crescimento e Desenvolvimento
11.
Environ Microbiol ; 17(12): 5023-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26013766

RESUMO

The gutless marine worm Olavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO2 ) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O. algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H2 ) might also be used as energy sources. We provide direct evidence that the O. algarvensis symbiosis consumes CO and H2 . Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3-symbiont, uses the energy from CO oxidation to fix CO2 . Pore water analysis revealed considerable in-situ concentrations of CO and H2 in the O. algarvensis environment, Mediterranean seagrass sediments. Pore water H2 concentrations (89-2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36-fold higher than previously known from shallow-water marine sediments. Pore water CO concentrations (17-51 nM) were twice as high as in the overlying seawater (no literature data from other shallow-water sediments are available for comparison). Ex-situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments.


Assuntos
Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Hidrogênio/metabolismo , Oligoquetos/microbiologia , Água do Mar/microbiologia , Animais , Dióxido de Carbono/metabolismo , Metabolismo Energético , Região do Mediterrâneo , Oxirredução , Espectrometria de Massa de Íon Secundário , Compostos de Enxofre/metabolismo , Simbiose
12.
Proc Natl Acad Sci U S A ; 109(19): E1173-82, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22517752

RESUMO

Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO(2). Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic association between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose previously undescribed pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These pathways include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate; (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses; (iii) the potential use of hydrogen as an energy source; (iv) the strong expression of high-affinity uptake transporters; and (v) as yet undescribed energy-efficient steps in CO(2) fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Oligoquetos/metabolismo , Proteômica/métodos , Simbiose , Animais , Bactérias/crescimento & desenvolvimento , Ciclo do Carbono , Cromatografia Líquida de Alta Pressão , Ecossistema , Eletroforese em Gel de Poliacrilamida , Metabolismo Energético , Interações Hospedeiro-Patógeno , Hidrogênio/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas , Metabolômica/métodos , Oligoquetos/microbiologia , Água do Mar
13.
Environ Microbiol ; 16(12): 3699-713, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25142549

RESUMO

Symbiotic bivalves at hydrothermal vents and cold seeps host chemosynthetic bacteria intracellularly in gill cells. In bivalves, the gills grow continuously throughout their lifetime by forming new filaments. We examined how newly developed gill tissues are colonized in bivalves with horizontal and vertical symbiont transmission (Bathymodiolus mussels versus a vesicoymid clam) using fluorescence in situ hybridization and transmission electron microscopy. Symbiont colonization was similar in mussels and clams and was independent of the transmission modes. Symbionts were absent in the growth zones of the gills, indicating that symbionts colonize newly formed gill filaments de novo after they are formed and that gill colonization is a continuous process throughout the host's lifetime. Symbiont abundance and distribution suggested that colonization is shaped by the developmental stage of host cells. Self-infection, in which new gill cells are colonized by symbionts from ontogenetically older gill tissues, may also play a role. In mussels, symbiont infection led to changes in gill cell structure similar to those described from other epithelial cells infected by intracellular pathogens, such as the loss of microvilli. A better understanding of the factors that affect symbiont colonization of bivalve gills could provide new insights into interactions between intracellular bacteria and epithelial tissues.


Assuntos
Bactérias/crescimento & desenvolvimento , Bivalves/microbiologia , Brânquias/microbiologia , Simbiose , Animais , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Bivalves/ultraestrutura , Brânquias/crescimento & desenvolvimento , Brânquias/metabolismo , Brânquias/ultraestrutura , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão , Antígeno Nuclear de Célula em Proliferação/análise
14.
Environ Microbiol ; 16(12): 3638-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24552661

RESUMO

Vestimentiferan Tws colonize hydrothermal vents and cold seeps worldwide. They lack a digestive system and gain nutrition from endosymbiotic sulfur-oxidizing bacteria. It is currently assumed that vestimentiferan Tws harbour only a single endosymbiont type. A few studies found indications for additional symbionts, but conclusive evidence for a multiple symbiosis is still missing. We investigated Tws from Marsili Seamount, a hydrothermal vent in the Mediterranean Sea. Molecular and morphological analyses identified the Tws as Lamellibrachia anaximandri. 16S ribosomal RNA clone libraries revealed two distinct gammaproteobacterial phylotypes that were closely related to sequences from other Lamellibrachia symbionts. Catalysed reporter deposition fluorescence in situ hybridization with specific probes showed that these sequences are from two distinct symbionts. We also found two variants of key genes for sulfur oxidation and carbon fixation, suggesting that both symbiont types are autotrophic sulfur oxidizers. Our results therefore show that vestimentiferans can host multiple co-occurring symbiont types. Statistical analyses of vestimentiferan symbiont diversity revealed that host genus, habitat type, water depth and geographic region together accounted for 27% of genetic diversity, but only water depth had a significant effect on its own. Phylogenetic analyses showed a clear grouping of sequences according to depth, thus confirming the important role water depth played in shaping vestimentiferan symbiont diversity.


Assuntos
Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/metabolismo , Fontes Hidrotermais , Poliquetos/microbiologia , Poliquetos/fisiologia , Simbiose , Animais , Sequência de Bases , Ciclo do Carbono , Ecossistema , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Genes de RNAr , Variação Genética , Hibridização in Situ Fluorescente , Mar Mediterrâneo , Dados de Sequência Molecular , Oxirredução , Filogenia , Poliquetos/classificação , RNA Ribossômico 16S/genética , Enxofre/metabolismo
15.
Environ Microbiol ; 16(9): 2723-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24447589

RESUMO

The gill chamber of deep-sea hydrothermal vent shrimp Rimicaris exoculata hosts a dense community of epibiotic bacteria dominated by filamentous Epsilonproteobacteria and Gammaproteobacteria. Using metagenomics on shrimp from the Rainbow hydrothermal vent field, we showed that both epibiont groups have the potential to grow autotrophically and oxidize reduced sulfur compounds or hydrogen with oxygen or nitrate. For carbon fixation, the Epsilonproteobacteria use the reductive tricarboxylic acid cycle, whereas the Gammaproteobacteria use the Calvin-Benson-Bassham cycle. Only the epsilonproteobacterial epibionts had the genes necessary for producing ammonium. This ability likely minimizes direct competition between epibionts and also broadens the spectrum of environmental conditions that the shrimp may successfully inhabit. We identified genes likely to be involved in shrimp-epibiont interactions, as well as genes for nutritional and detoxification processes that might benefit the host. Shrimp epibionts at Rainbow are often coated with iron oxyhydroxides, whose origin is intensely debated. We identified 16S rRNA sequences and functional genes affiliated with iron-oxidizing Zetaproteobacteria, which indicates that biological iron oxidation might play a role in forming these deposits. Fluorescence in situ hybridizations confirmed the presence of active Zetaproteobacteria in the R. exoculata gill chamber, thus providing the first evidence for a Zetaproteobacteria-invertebrate association.


Assuntos
Decápodes/microbiologia , Epsilonproteobacteria/metabolismo , Gammaproteobacteria/metabolismo , Brânquias/microbiologia , Metagenômica , Animais , Ciclo do Carbono , Crescimento Quimioautotrófico , DNA Bacteriano/genética , Epsilonproteobacteria/genética , Gammaproteobacteria/genética , Fontes Hidrotermais , Hibridização in Situ Fluorescente , Fotossíntese , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
16.
Nat Microbiol ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242818

RESUMO

A limited number of bacteria are able to colonize the nuclei of eukaryotes. 'Candidatus Endonucleobacter' infects the nuclei of deep-sea mussels, where it replicates to ≥80,000 bacteria per nucleus and causes nuclei to swell to 50 times their original size. How these parasites are able to replicate and avoid apoptosis is not known. Dual RNA-sequencing transcriptomes of infected nuclei isolated using laser-capture microdissection revealed that 'Candidatus Endonucleobacter' does not obtain most of its nutrition from nuclear DNA or RNA. Instead, 'Candidatus Endonucleobacter' upregulates genes for importing and digesting sugars, lipids, amino acids and possibly mucin from its host. It likely prevents apoptosis of host cells by upregulating 7-13 inhibitors of apoptosis, proteins not previously seen in bacteria. Comparative phylogenetic analyses revealed that 'Ca. Endonucleobacter' acquired inhibitors of apoptosis through horizontal gene transfer from their hosts. Horizontal gene transfer from eukaryotes to bacteria is assumed to be rare, but may be more common than currently recognized.

17.
Science ; 380(6644): 520-526, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141360

RESUMO

Sterols are vital for nearly all eukaryotes. Their distribution differs in plants and animals, with phytosterols commonly found in plants whereas most animals are dominated by cholesterol. We show that sitosterol, a common sterol of plants, is the most abundant sterol in gutless marine annelids. Using multiomics, metabolite imaging, heterologous gene expression, and enzyme assays, we show that these animals synthesize sitosterol de novo using a noncanonical C-24 sterol methyltransferase (C24-SMT). This enzyme is essential for sitosterol synthesis in plants, but not known from most bilaterian animals. Our phylogenetic analyses revealed that C24-SMTs are present in representatives of at least five animal phyla, indicating that the synthesis of sterols common to plants is more widespread in animals than currently known.


Assuntos
Anelídeos , Colesterol , Sitosteroides , Animais , Colesterol/metabolismo , Filogenia , Plantas/metabolismo , Sitosteroides/metabolismo , Anelídeos/metabolismo
18.
Environ Microbiol ; 14(6): 1584-95, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22672589

RESUMO

In marine invertebrates that acquire their symbionts from the environment, these are generally only taken up during early developmental stages. In the symbiosis between lucinid clams and their intracellular sulfur-oxidizing bacteria, it has been shown that the juveniles acquire their symbionts from an environmental stock of free-living symbiont forms, but it is not known if adult clams are still competent to take up symbiotic bacteria from the environment. In this study, we investigated symbiont acquisition in adult specimens of the lucinid clam Codakia orbiculata, using transmission electron microscopy, fluorescence in situ hybridization, immunohistochemistry and PCR. We show here that adults that had no detectable symbionts after starvation in aquaria for 6 months, rapidly reacquired symbionts within days after being returned to their natural environments in the field. Control specimens that were starved and then exposed to seawater aquaria with sulfide did not reacquire symbionts. This indicates that the reacquisition of symbionts in the starved clams returned to the field was not caused by high division rates of a small pool of remaining symbionts that we were not able to detect with the methods used here. Immunohistochemistry with an antibody against actin, a protein involved in the phagocytosis of intracellular bacteria, showed that actin was expressed at the apical ends of the gill cells that took up symbionts, providing further evidence that the symbionts were acquired from the environment. Interestingly, actin expression was also observed in symbiont-containing cells of untreated lucinids freshly collected from the environment, indicating that symbiont acquisition from the environment occurs continuously in these clams throughout their lifetime.


Assuntos
Bivalves/microbiologia , Bivalves/fisiologia , Simbiose , Adolescente , Adulto , Animais , Bactérias/metabolismo , Bivalves/ultraestrutura , Brânquias/microbiologia , Humanos , Hibridização in Situ Fluorescente , Estágios do Ciclo de Vida , Masculino , Microscopia Eletrônica de Transmissão , Água do Mar/química , Água do Mar/microbiologia , Sulfetos/metabolismo
19.
Nature ; 443(7114): 950-5, 2006 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-16980956

RESUMO

Symbioses between bacteria and eukaryotes are ubiquitous, yet our understanding of the interactions driving these associations is hampered by our inability to cultivate most host-associated microbes. Here we use a metagenomic approach to describe four co-occurring symbionts from the marine oligochaete Olavius algarvensis, a worm lacking a mouth, gut and nephridia. Shotgun sequencing and metabolic pathway reconstruction revealed that the symbionts are sulphur-oxidizing and sulphate-reducing bacteria, all of which are capable of carbon fixation, thus providing the host with multiple sources of nutrition. Molecular evidence for the uptake and recycling of worm waste products by the symbionts suggests how the worm could eliminate its excretory system, an adaptation unique among annelid worms. We propose a model that describes how the versatile metabolism within this symbiotic consortium provides the host with an optimal energy supply as it shuttles between the upper oxic and lower anoxic coastal sediments that it inhabits.


Assuntos
Genômica , Oligoquetos/microbiologia , Oligoquetos/fisiologia , Proteobactérias/genética , Proteobactérias/metabolismo , Simbiose/genética , Simbiose/fisiologia , Animais , Carbono/metabolismo , Digestão/fisiologia , Metabolismo Energético , Meio Ambiente , Microbiologia , Modelos Biológicos
20.
Microbiome ; 10(1): 178, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273146

RESUMO

BACKGROUND: Many animals live in intimate associations with a species-rich microbiome. A key factor in maintaining these beneficial associations is fidelity, defined as the stability of associations between hosts and their microbiota over multiple host generations. Fidelity has been well studied in terrestrial hosts, particularly insects, over longer macroevolutionary time. In contrast, little is known about fidelity in marine animals with species-rich microbiomes at short microevolutionary time scales, that is at the level of a single host population. Given that natural selection acts most directly on local populations, studies of microevolutionary partner fidelity are important for revealing the ecological and evolutionary processes that drive intimate beneficial associations within animal species. RESULTS: In this study on the obligate symbiosis between the gutless marine annelid Olavius algarvensis and its consortium of seven co-occurring bacterial symbionts, we show that partner fidelity varies across symbiont species from strict to absent over short microevolutionary time. Using a low-coverage sequencing approach that has not yet been applied to microbial community analyses, we analysed the metagenomes of 80 O. algarvensis individuals from the Mediterranean and compared host mitochondrial and symbiont phylogenies based on single-nucleotide polymorphisms across genomes. Fidelity was highest for the two chemoautotrophic, sulphur-oxidizing symbionts that dominated the microbial consortium of all O. algarvensis individuals. In contrast, fidelity was only intermediate to absent in the sulphate-reducing and spirochaetal symbionts with lower abundance. These differences in fidelity are likely driven by both selective and stochastic forces acting on the consistency with which symbionts are vertically transmitted. CONCLUSIONS: We hypothesize that variable degrees of fidelity are advantageous for O. algarvensis by allowing the faithful transmission of their nutritionally most important symbionts and flexibility in the acquisition of other symbionts that promote ecological plasticity in the acquisition of environmental resources. Video Abstract.


Assuntos
Anelídeos , Consórcios Microbianos , Simbiose , Animais , Bactérias/genética , Filogenia , Sulfatos , Enxofre , Anelídeos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA