RESUMO
Vitrified-warmed immature equine oocytes are able to complete the first meiotic division, but their subsequent developmental competence is compromised. Therefore, the present study investigated the effects of vitrifying immature horse oocytes on the chromosome and spindle configuration after IVM. Cumulus-oocytes complexes (COCs) were collected and divided into two groups based on mare age (young ≤14 years; old ≥16 years). COCs were then either directly matured invitro or vitrified and warmed before IVM. Spindle morphology and chromosome alignment within MII stage oocytes were assessed using immunofluorescent staining, confocal microscopy and three-dimensional image analysis. Vitrification reduced the ability of oocytes to reach MII and resulted in ultrastructural changes to the meiotic spindle, including shortening of its long axis, and an increased incidence of chromosomes failing to align properly at the metaphase plate. We hypothesise that aberrant chromosome alignment is an important contributor to the reduced developmental competence of vitrified equine oocytes. Contrary to expectation, oocytes from young mares were more severely affected than oocytes from older mares; we propose that the reduced effect of vitrification on oocytes from older mares is related to pre-existing compromise of spindle assembly checkpoint control mechanisms in these mares.
RESUMO
Invitro embryo production is an increasingly popular means of breeding horses. However, success is limited by a high incidence of early embryo loss. Although there are various possible causes of pregnancy failure, chromosomal abnormalities, including aneuploidy, are important potential contributors. This study evaluated the frequency of micronucleus formation as a proxy for aneuploidy in invitro-produced (IVP) and invivo-derived horse blastocysts. Associations between IVP embryo morphology, frequency of nuclear abnormalities and the likelihood of pregnancy were investigated. IVP blastocysts exhibited a higher frequency of cells with micronuclei than invivo-derived embryos (10% vs 1% respectively; P=0.05). This indication of chromosomal instability may explain the higher incidence of pregnancy failure after transfer of IVP embryos. However, the frequency of micronuclei was not correlated with brightfield microscopic morphological characteristics. Nevertheless, IVP embryos reaching the blastocyst stage after Day 9 of invitro culture were less likely to yield a pregnancy than embryos that developed to blastocysts before Day 9 (27% vs 69%), and embryos that had expanded before transfer were more likely to undergo embryonic death than those that had not expanded (44% vs 10%). These findings indicate that current embryo culture conditions are suboptimal and that the speed of embryo development is correlated with pregnancy survival.
Assuntos
Blastocisto/citologia , Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia , Fertilização in vitro , Cavalos , Micronúcleos com Defeito Cromossômico/embriologia , Prenhez , Aneuploidia , Animais , Instabilidade Cromossômica/fisiologia , Aberrações Cromossômicas/embriologia , Aberrações Cromossômicas/veterinária , Perda do Embrião/genética , Perda do Embrião/veterinária , Transferência Embrionária/veterinária , Embrião de Mamíferos , Feminino , Fertilização in vitro/métodos , Fertilização in vitro/veterinária , Cavalos/embriologia , Cavalos/fisiologia , Masculino , Micronúcleos com Defeito Cromossômico/veterinária , Gravidez , Prenhez/genética , Fatores de TempoRESUMO
Several methods have been proposed to advance the onset of the breeding season in horses. Most of them are based on the exposure to an artificial lighting period combined with hormonal treatments. Mares exposed to an artificial photoperiod are most often housed indoors where the ambient temperature is often higher than the outside temperature. Mares held in barns are also exposed to different daylight intensities than horses kept outside, depending on the architecture. In the current study, we evaluated the impact of ambient temperature, daylight intensity and changes in body condition score (BCS) on the timing of first ovulation after winter anestrus in mares exposed to an artificial photoperiod. Mares (n = 211) were housed in barns with different ambient temperature and daylight exposure but with the same artificial photoperiod exposure (except for a natural photoperiod control group). Artificial photoperiod as well as an increase in BCS over the winter significantly advanced the first spring ovulation. The BCS at the start and end of the anestrus period did not have an effect on the interval to first ovulation and neither did the modest increase in ambient temperature in the barn. However, a higher light intensity during the daytime significantly advanced the first spring ovulation. The results of this study suggest that exposure to more sunlight advances the onset of the breeding season. This effect is likely mediated through the biological effect of short wavelength blue light and its impact on melatonin suppression and biological rhythms. We suggest that greater/direct exposure to the blue light component of daylight improves the response to the artificial photoperiod. The results of the present study can further assist to optimize the conditions that lead to an efficient spring transition of breeding mares.
Assuntos
Ciclo Estral/efeitos da radiação , Cavalos/fisiologia , Luz Solar , Temperatura , Animais , Composição Corporal , Ciclo Estral/fisiologia , Feminino , Luz , Ovulação/fisiologia , Fotoperíodo , Estações do AnoRESUMO
Aneuploidy of meiotic origin is a major contributor to age-related subfertility and an increased risk of miscarriage in women. Although age-related aneuploidy has been studied in rodents, the mare may be a more appropriate animal model to study reproductive aging. Similar to women, aged mares show reduced fertility and an increased incidence of early pregnancy loss; however, it is not known whether aging predisposes to aneuploidy in equine oocytes. We evaluated the effect of advanced mare age on (1) gene expression for cohesin components, (2) incidence of aneuploidy and (3) chromosome centromere cohesion (measured as the distance between sister kinetochores) in oocytes matured in vitro. Oocytes from aged mares showed reduced gene expression for the centromere cohesion stabilizing protein, Shugoshin 1. Moreover, in vitro matured oocytes from aged mares showed a higher incidence of aneuploidy and premature sister chromatid separation, and weakened centromeric cohesion. We therefore propose the mare as a valid model for studying effects of aging on centromeric cohesion; cohesion loss predisposes to disintegration of bivalents and premature separation of sister chromatids during the first meiotic division, leading to embryonic aneuploidy; this probably contributes to the reduced fertility and increased incidence of pregnancy loss observed in aged mares.
Assuntos
Envelhecimento/genética , Aneuploidia , Centrômero/genética , Cavalos , Oócitos/patologia , Saúde Reprodutiva , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Centrômero/patologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Maturação in Vitro de Oócitos , Modelos Animais , Oócitos/metabolismo , CoesinasRESUMO
In the present study, we examined the effect of holding equine oocytes in Syngro embryo holding medium (EHM) overnight at either 4 °C, 17 °C, or 22 °C to 25 °C, on the time to maturation and developmental competence. We also examined the effect of placing denuded oocyte without extruded polar body back in maturation condition on subsequent maturation rate. In experiment 1, cumulus-oocyte complexes (COCs) were recovered postmortem and placed in EHM at 22 °C to 25 °C for 18 to 20 hours (OH) or placed directly in maturation (DM). The maturation rate was assessed after 22, 24, or 28 hours of culture. After denuding cumulus cells at 22 or 24 hours, oocytes without obvious polar body were placed back into culture and reassessed at subsequent time points. At 22 hours, a higher proportion of oocytes placed in OH achieved nuclear maturation than those placed in DM (63% and 37%, respectively, P = 0.008). At 24 and 28 hours, no significant differences in the % MII stage oocytes were observed between OH and DM. The nuclear maturation rate for OH oocytes was similar at 22, 24, and 28 hours, indicating that the maximum maturation rate was reached at an earlier time than that in DM. Oocytes fertilized by intracytoplasmic sperm injection resulted in a 7.1% and 6.3% blastocyst rate for OH and DM, respectively. Denuding oocytes after 22 hours or more of culture did not have an adverse effect on the final nuclear maturation rate. After 28 hours of culture, the same nuclear maturation rate (MII) was reached for nondenuded oocytes and oocytes denuded after 22 hours of 24 hours of culture. In experiment 2, COCs were held overnight at room temperature in EHM, then placed in maturation for 20, 22, and 28 hours. Nuclear maturation rate was significantly lower at 20 hours than 22 and 28 hours of culture and was similar at 22 and 28 hours, suggesting that at least 22 hours of culture is required to reach maximal maturation rate for stored oocytes (43%, 62%, and 65% at 20, 22, and 28 hours, respectively. P < 0.001). In experiment 3, COCs were either placed directly in culture or held at 22 °C to 25 °C, 17 °C, or 4 °C overnight. After 24 hours of culture, maturation rate was similar for all groups, suggesting that COCs can be stored in conventional 4 °C transport condition or 17 °C. In preliminary studies, COCs were held at 4 °C followed by 24 hours of culture, and mature oocytes were fertilized using intracytoplasmic sperm injection. Twenty-three injected oocytes yielded four blastocysts. In conclusion, we reported that oocytes can be placed in a commercial EHM and stored overnight without a detrimental effect on maturation rates or blastocyst development. Oocytes held in holding medium require less time to reach the MII stage than oocytes placed in culture directly. Removing the cumulus cells from oocytes that have been cultured for at least 22 hours does not seem to alter the final nuclear maturation rate. Finally, we observed no detrimental effect of storing oocytes at 4 °C for up to 18 hours, and oocytes appeared to maintain developmental competence and blastocyst potential.