Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 96: 48-63, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788736

RESUMO

Phenotypic plasticity was recently incorporated as a hallmark of cancer. This plasticity can manifest along many interconnected axes, such as stemness and differentiation, drug-sensitive and drug-resistant states, and between epithelial and mesenchymal cell-states. Despite growing acceptance for phenotypic plasticity as a hallmark of cancer, the dynamics of this process remains poorly understood. In particular, the knowledge necessary for a predictive understanding of how individual cancer cells and populations of cells dynamically switch their phenotypes in response to the intensity and/or duration of their current and past environmental stimuli remains far from complete. Here, we present recent investigations of phenotypic plasticity from a systems-level perspective using two exemplars: epithelial-mesenchymal plasticity in carcinomas and phenotypic switching in melanoma. We highlight how an integrated computational-experimental approach has helped unravel insights into specific dynamical hallmarks of phenotypic plasticity in different cancers to address the following questions: a) how many distinct cell-states or phenotypes exist?; b) how reversible are transitions among these cell-states, and what factors control the extent of reversibility?; and c) how might cell-cell communication be able to alter rates of cell-state switching and enable diverse patterns of phenotypic heterogeneity? Understanding these dynamic features of phenotypic plasticity may be a key component in shifting the paradigm of cancer treatment from reactionary to a more predictive, proactive approach.


Assuntos
Carcinoma , Melanoma , Humanos , Transição Epitelial-Mesenquimal/genética , Melanoma/genética , Diferenciação Celular/genética , Fenótipo
2.
Phys Biol ; 18(4)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33730700

RESUMO

Decoding the dynamics of cellular decision-making and cell differentiation is a central question in cell and developmental biology. A common network motif involved in many cell-fate decisions is a mutually inhibitory feedback loop between two self-activating 'master regulators' A and B, also called as toggle switch. Typically, it can allow for three stable states-(high A, low B), (low A, high B) and (medium A, medium B). A toggle triad-three mutually repressing regulators A, B and C, i.e. three toggle switches arranged circularly (between A and B, between B and C, and between A and C)-can allow for six stable states: three 'single positive' and three 'double positive' ones. However, the operating principles of larger toggle polygons, i.e. toggle switches arranged circularly to form a polygon, remain unclear. Here, we simulate using both discrete and continuous methods the dynamics of different sized toggle polygons. We observed a pattern in their steady state frequency depending on whether the polygon was an even or odd numbered one. The even-numbered toggle polygons result in two dominant states with consecutive components of the network expressing alternating high and low levels. The odd-numbered toggle polygons, on the other hand, enable more number of states, usually twice the number of components with the states that follow 'circular permutation' patterns in their composition. Incorporating self-activations preserved these trends while increasing the frequency of multistability in the corresponding network. Our results offer insights into design principles of circular arrangement of regulatory units involved in cell-fate decision making, and can offer design strategies for synthesizing genetic circuits.


Assuntos
Diferenciação Celular , Redes Reguladoras de Genes/fisiologia , Diferenciação Celular/genética , Modelos Biológicos
3.
Mol Cancer Res ; 22(5): 465-481, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38319300

RESUMO

Although suppressed cAMP levels have been linked to cancer for nearly five decades, the molecular basis remains uncertain. Here, we identify endosomal pH as a novel regulator of cytosolic cAMP homeostasis and a promoter of transformed phenotypic traits in colorectal cancer. Combining experiments and computational analysis, we show that the Na+/H+ exchanger NHE9 contributes to proton leak and causes luminal alkalinization, which induces resting [Ca2+], and in consequence, represses cAMP levels, creating a feedback loop that echoes nutrient deprivation or hypoxia. Higher NHE9 expression in cancer epithelia is associated with a hybrid epithelial-mesenchymal (E/M) state, poor prognosis, tumor budding, and invasive growth in vitro and in vivo. These findings point to NHE9-mediated cAMP suppression as a pseudostarvation-induced invasion state and potential therapeutic vulnerability in colorectal cancer. Our observations lay the groundwork for future research into the complexities of endosome-driven metabolic reprogramming and phenotype switching and the biology of cancer progression. IMPLICATIONS: Endosomal pH regulator NHE9 actively controls cytosolic Ca2+ levels to downregulate the adenylate cyclase-cAMP system, enabling colorectal cancer cells to acquire hybrid E/M characteristics and promoting metastatic progression.


Assuntos
AMP Cíclico , Endossomos , Trocadores de Sódio-Hidrogênio , Humanos , Endossomos/metabolismo , AMP Cíclico/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Animais , Citosol/metabolismo , Progressão da Doença , Camundongos , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
4.
Essays Biochem ; 66(4): 387-398, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36073715

RESUMO

Intratumoral heterogeneity can exist along multiple axes: Cancer stem cells (CSCs)/non-CSCs, drug-sensitive/drug-tolerant states, and a spectrum of epithelial-hybrid-mesenchymal phenotypes. Further, these diverse cell-states can switch reversibly among one another, thereby posing a major challenge to therapeutic efficacy. Therefore, understanding the origins of phenotypic plasticity and heterogeneity remains an active area of investigation. While genomic components (mutations, chromosomal instability) driving heterogeneity have been well-studied, recent reports highlight the role of non-genetic mechanisms in enabling both phenotypic plasticity and heterogeneity. Here, we discuss various processes underlying phenotypic plasticity such as stochastic gene expression, chromatin reprogramming, asymmetric cell division and the presence of multiple stable gene expression patterns ('attractors'). These processes can facilitate a dynamically evolving cell population such that a subpopulation of (drug-tolerant) cells can survive lethal drug exposure and recapitulate population heterogeneity on drug withdrawal, leading to relapse. These drug-tolerant cells can be both pre-existing and also induced by the drug itself through cell-state reprogramming. The dynamics of cell-state transitions both in absence and presence of the drug can be quantified through mathematical models. Such a dynamical systems approach to elucidating patterns of intratumoral heterogeneity by integrating longitudinal experimental data with mathematical models can help design effective combinatorial and/or sequential therapies for better clinical outcomes.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Cromatina , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Células-Tronco Neoplásicas/fisiologia , Dinâmica Populacional
5.
J Phys Chem B ; 126(30): 5613-5618, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35876849

RESUMO

Biological cells can exist in a variety of distinct phenotypes, determined by the steady-state solutions of genetic networks governing their cell fate. A popular way of representing these states relies on the creation of landscape related to the relative occupation of these states. It is often assumed that this landscape offers direct information regarding the state-to-state transition rates, suggesting that these are related to barrier heights separating landscape minima. Here, we study a toggle triad network exhibiting multistability and directly demonstrate the lack of any direct correlation between properties of the landscape and corresponding transition rates.


Assuntos
Redes Reguladoras de Genes , Diferenciação Celular
6.
Clin Exp Metastasis ; 39(2): 279-290, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34993766

RESUMO

Establishing macrometastases at distant organs is a highly challenging process for cancer cells, with extremely high attrition rates. A very small percentage of disseminated cells have the ability to dynamically adapt to their changing micro-environments through reversibly switching to another phenotype, aiding metastasis. Such plasticity can be exhibited along one or more axes-epithelial-mesenchymal plasticity (EMP) and cancer stem cells (CSCs) being the two most studied, and often tacitly assumed to be synonymous. Here, we review the emerging concepts related to EMP and CSCs across multiple cancers. Both processes are multi-dimensional in nature; for instance, EMP can be defined on morphological, molecular and functional changes, which may or may not be synchronized. Similarly, self-renewal, multi-lineage potential, and resistance to anoikis and/or therapy may not all occur simultaneously in CSCs. Thus, understanding the complexity in defining EMP and CSCs is essential if we are to understand their contribution to cancer metastasis. This will require a more comprehensive understanding of the non-linearity of these processes. These processes are dynamic, reversible, and semi-independent in nature; cells traverse the inter-connected high-dimensional EMP and CSC landscapes in diverse paths, each of which may exhibit a distinct EMP-CSC coupling. Our proposed model offers a potential unifying framework for elucidating the coupled decision-making along these dimensions and highlights a key set of open questions to be answered.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
7.
Mol Biol Cell ; 33(6): ar46, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35353012

RESUMO

Naïve helper (CD4+) T-cells can differentiate into distinct functional subsets including Th1, Th2, and Th17 phenotypes. Each of these phenotypes has a "master regulator"-T-bet (Th1), GATA3 (Th2), and RORγT (Th17)-that inhibits the other two master regulators. Such mutual repression among them at a transcriptional level can enable multistability, giving rise to six experimentally observed phenotype, Th1, Th2, Th17, hybrid Th/Th2, hybrid Th2/Th17, and hybrid Th1/Th17. However, the dynamics of switching among these phenotypes, particularly in the case of epigenetic influence, remain unclear. Here through mathematical modeling, we investigated the coupled transcription-epigenetic dynamics in a three-node mutually repressing network to elucidate how epigenetic changes mediated by any master regulator can influence the transition rates among different cellular phenotypes. We show that the degree of plasticity exhibited by one phenotype depends on relative strength and duration of mutual epigenetic repression mediated among the master regulators in a three-node network. Further, our model predictions can offer putative mechanisms underlying relatively higher plasticity of Th17 phenotype as observed in vitro and in vivo. Together, our modeling framework characterizes phenotypic plasticity and heterogeneity as an outcome of emergent dynamics of a three-node regulatory network, such as the one mediated by T-bet/GATA3/RORγT.


Assuntos
Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Células Th17 , Diferenciação Celular , Fenótipo
8.
J Biosci ; 472022.
Artigo em Inglês | MEDLINE | ID: mdl-36550692

RESUMO

Understanding the dynamical hallmarks of network motifs is one of the fundamental aspects of systems biology. Positive feedback loops constituting one or two nodes - self-activation, toggle switch, and double activation loops - are the commonly observed motifs in regulatory networks underlying cell-fate decision systems. Their individual dynamics are well studied; they are capable of exhibiting bistability. However, studies across various biological systems suggest that such positive feedback loops are interconnected with one another, and design principles of coupled bistable motifs remain unclear. What happens to the bistability or multistability traits and the phenotypic space (collection of phenotypes exhibited by a system) due to the couplings? In this study, we explore a set of such interactions using discrete and continuous simulation methods. Our results suggest that the most frequent states in coupled networks follow the 'rules' within a motif (double activation, toggle switch) and those across the two motifs in terms of how the two motifs have been coupled. Moreover, 'hybrid' states can be observed, too, where one of the above-mentioned 'rules' can be compromised, leading to a more diverse phenotypic repertoire. Furthermore, adding direct and indirect selfactivations to these coupled networks can increase the frequency of multistability. Thus, our observations revealed specific dynamical traits exhibited by various coupled bistable motifs.


Assuntos
Retroalimentação Fisiológica , Redes Reguladoras de Genes , Modelos Biológicos
9.
Biomolecules ; 12(12)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36551270

RESUMO

Elucidating the design principles of regulatory networks driving cellular decision-making has important implications for understanding cell differentiation and guiding the design of synthetic circuits. Mutually repressing feedback loops between 'master regulators' of cell fates can exhibit multistable dynamics enabling "single-positive" phenotypes: (high A, low B) and (low A, high B) for a toggle switch, and (high A, low B, low C), (low A, high B, low C) and (low A, low B, high C) for a toggle triad. However, the dynamics of these two motifs have been interrogated in isolation in silico, but in vitro and in vivo, they often operate while embedded in larger regulatory networks. Here, we embed these motifs in complex larger networks of varying sizes and connectivity to identify hallmarks under which these motifs maintain their canonical dynamical behavior. We show that an increased number of incoming edges onto a motif leads to a decay in their canonical stand-alone behaviors. We also show that this decay can be exacerbated by adding self-inhibition but not self-activation loops on the 'master regulators'. These observations offer insights into the design principles of biological networks containing these motifs and can help devise optimal strategies for the integration of these motifs into larger synthetic networks.


Assuntos
Retroalimentação Fisiológica , Redes Reguladoras de Genes , Diferenciação Celular
10.
J R Soc Interface ; 17(170): 20200631, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32993428

RESUMO

Identifying the design principles of complex regulatory networks driving cellular decision-making remains essential to decode embryonic development as well as enhance cellular reprogramming. A well-studied network motif involved in cellular decision-making is a toggle switch-a set of two opposing transcription factors A and B, each of which is a master regulator of a specific cell fate and can inhibit the activity of the other. A toggle switch can lead to two possible states-(high A, low B) and (low A, high B)-and drives the 'either-or' choice between these two cell fates for a common progenitor cell. However, the principles of coupled toggle switches remain unclear. Here, we investigate the dynamics of three master regulators A, B and C inhibiting each other, thus forming three-coupled toggle switches to form a toggle triad. Our simulations show that this toggle triad can lead to co-existence of cells into three differentiated 'single positive' phenotypes-(high A, low B, low C), (low A, high B, low C) and (low A, low B, high C). Moreover, the hybrid or 'double positive' phenotypes-(high A, high B, low C), (low A, high B, high C) and (high A, low B, high C)-can coexist together with 'single positive' phenotypes. Including self-activation loops on A, B and C can increase the frequency of 'double positive' states. Finally, we apply our results to understand cellular decision-making in terms of differentiation of naive CD4+ T cells into Th1, Th2 and Th17 states, where hybrid Th1/Th2 and hybrid Th1/Th17 cells have been reported in addition to the Th1, Th2 and Th17 ones. Our results offer novel insights into the design principles of a multi-stable network topology and provide a framework for synthetic biology to design tristable systems.


Assuntos
Biologia Sintética , Fatores de Transcrição , Diferenciação Celular , Desenvolvimento Embrionário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA