Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Ecol Lett ; 27(7): e14469, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990962

RESUMO

The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE-a critical but previously unexamined aspect of biodiversity-ecosystem functioning.


Assuntos
Biodiversidade , Carbono , Gases de Efeito Estufa , Plantas , Solo , Solo/química , Gases de Efeito Estufa/análise , Carbono/metabolismo , Carbono/análise , Plantas/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Ecossistema , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Metano/metabolismo , Efeito Estufa
2.
Glob Chang Biol ; 30(4): e17248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581126

RESUMO

Both human populations and marine biodiversity are concentrated along coastlines, with growing conservation interest in how these ecosystems can survive intense anthropogenic impacts. Tropical urban centres provide valuable research opportunities because these megacities are often adjacent to mega-diverse coral reef systems. The Pearl River Delta is a prime exemplar, as it encompasses one of the most densely populated and impacted regions in the world and is located just northwest of the Coral Triangle. However, the spatial and taxonomic complexity of this biodiversity, most of which is small, cryptic in habitat and poorly known, make comparative analyses challenging. We deployed standardized settlement structures at seven sites differing in the intensity of human impacts and used COI metabarcoding to characterize benthic biodiversity, with a focus on metazoans. We found a total of 7184 OTUs, with an average of 665 OTUs per sampling unit; these numbers exceed those observed in many previous studies using comparable methods, despite the location of our study in an urbanized environment. Beta diversity was also high, with 52% of the OTUs found at just one site. As expected, we found that the sites close to point sources of pollution had substantially lower diversity (44% less) relative to sites bathed in less polluted oceanic waters. However, the polluted sites contributed substantially to the total animal diversity of the region, with 25% of all OTUs occurring only within polluted sites. Further analysis of Arthropoda, Annelida and Mollusca showed that phylogenetic clustering within a site was common, suggesting that environmental filtering reduced biodiversity to a subset of lineages present within the region, a pattern that was most pronounced in polluted sites and for the Arthropoda. The water quality gradients surrounding the PRD highlight the unique role of in situ studies for understanding the impacts of complex urbanization pressures on biodiversity.


Assuntos
Antozoários , Ecossistema , Animais , Humanos , Filogenia , Biodiversidade , Recifes de Corais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA