Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 156(1-2): 183-94, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24361104

RESUMO

The physical nature of the bacterial cytoplasm is poorly understood even though it determines cytoplasmic dynamics and hence cellular physiology and behavior. Through single-particle tracking of protein filaments, plasmids, storage granules, and foreign particles of different sizes, we find that the bacterial cytoplasm displays properties that are characteristic of glass-forming liquids and changes from liquid-like to solid-like in a component size-dependent fashion. As a result, the motion of cytoplasmic components becomes disproportionally constrained with increasing size. Remarkably, cellular metabolism fluidizes the cytoplasm, allowing larger components to escape their local environment and explore larger regions of the cytoplasm. Consequently, cytoplasmic fluidity and dynamics dramatically change as cells shift between metabolically active and dormant states in response to fluctuating environments. Our findings provide insight into bacterial dormancy and have broad implications to our understanding of bacterial physiology, as the glassy behavior of the cytoplasm impacts all intracellular processes involving large components.


Assuntos
Caulobacter crescentus/citologia , Caulobacter crescentus/metabolismo , Escherichia coli/citologia , Fenômenos Biofísicos , Caulobacter crescentus/química , Cromossomos Bacterianos/metabolismo , Citoplasma/química , Escherichia coli/química , Escherichia coli/metabolismo , Plasmídeos/metabolismo
2.
Cell ; 148(1-2): 175-88, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265410

RESUMO

Little is known about how neutrophils and other cells establish a single zone of actin assembly during migration. A widespread assumption is that the leading edge prevents formation of additional fronts by generating long-range diffusible inhibitors or by sequestering essential polarity components. We use morphological perturbations, cell-severing experiments, and computational simulations to show that diffusion-based mechanisms are not sufficient for long-range inhibition by the pseudopod. Instead, plasma membrane tension could serve as a long-range inhibitor in neutrophils. We find that membrane tension doubles during leading-edge protrusion, and increasing tension is sufficient for long-range inhibition of actin assembly and Rac activation. Furthermore, reducing membrane tension causes uniform actin assembly. We suggest that tension, rather than diffusible molecules generated or sequestered at the leading edge, is the dominant source of long-range inhibition that constrains the spread of the existing front and prevents the formation of secondary fronts.


Assuntos
Quimiotaxia de Leucócito , Neutrófilos/citologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Polaridade Celular , Humanos , Neutrófilos/metabolismo , Pseudópodes/metabolismo
3.
Nat Rev Mol Cell Biol ; 15(12): 802-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25355505

RESUMO

Soft connective tissues at steady state are dynamic; resident cells continually read environmental cues and respond to them to promote homeostasis, including maintenance of the mechanical properties of the extracellular matrix (ECM) that are fundamental to cellular and tissue health. The mechanosensing process involves assessment of the mechanics of the ECM by the cells through integrins and the actomyosin cytoskeleton, and is followed by a mechanoregulation process, which includes the deposition, rearrangement or removal of the ECM to maintain overall form and function. Progress towards understanding the molecular, cellular and tissue-level effects that promote mechanical homeostasis has helped to identify key questions for future research.


Assuntos
Matriz Extracelular/fisiologia , Mecanotransdução Celular , Animais , Citoesqueleto/metabolismo , Matriz Extracelular/química , Homeostase , Humanos , Integrinas/metabolismo
4.
Nat Mater ; 23(1): 124-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884672

RESUMO

Bicontinuous microstructures are essential to the function of diverse natural and synthetic systems. Their synthesis has been based on two approaches: arrested phase separation or self-assembly of block copolymers. The former is attractive for its chemical simplicity and the latter, for its thermodynamic robustness. Here we introduce elastic microphase separation (EMPS) as an alternative approach to make bicontinuous microstructures. Conceptually, EMPS balances the molecular-scale forces that drive demixing with large-scale elasticity to encode a thermodynamic length scale. This process features a continuous phase transition, reversible without hysteresis. Practically, EMPS is triggered by simply supersaturating an elastomeric matrix with a liquid, resulting in uniform bicontinuous materials with a well-defined microscopic length scale tuned by the matrix stiffness. The versatility of EMPS is further demonstrated by fabricating bicontinuous materials with superior mechanical properties and controlled anisotropy and microstructural gradients. Overall, EMPS presents a robust alternative for the bulk fabrication of homogeneous bicontinuous materials.

5.
Proc Natl Acad Sci U S A ; 119(31): e2200748119, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35905317

RESUMO

When materials freeze, they often undergo damage due to ice growth. Although this damage is commonly ascribed to the volumetric expansion of water upon freezing, it is usually driven by the flow of water toward growing ice crystals that feeds their growth. The freezing of this additional water can cause a large buildup of stress. Here, we demonstrate a technique for characterizing this stress buildup with unprecedented spatial resolution. We create a stable ice-water interface in a controlled temperature gradient and measure the deformation of the confining boundary. Analysis of the deformation field reveals stresses applied to the boundary with [Formula: see text](micrometers) spatial resolution. Globally, stresses increase steadily over time as liquid water is transported to more deeply undercooled regions. Locally, stresses increase until ice growth is stalled by the confining stresses. Importantly, we find a strong localization of stresses, which significantly increases the likelihood of damage caused by the presence of ice, even in apparently benign freezing situations. Ultimately, the limiting stress that the ice exerts is proportional to the local undercooling, in accordance with the Clapeyron equation, which describes the equilibrium between a stressed solid and its melt. Our results are closely connected to the condensation pressure during liquid-liquid phase separation and the crystallization pressure for growing crystals. Thus, they are highly relevant in fields ranging from cryopreservation and frost heave to food science, rock weathering, and art conservation.

6.
Proc Natl Acad Sci U S A ; 119(31): e2201014119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35905319

RESUMO

Diatoms are single-celled organisms with a cell wall made of silica, called the frustule. Even though their elaborate patterns have fascinated scientists for years, little is known about the biological and physical mechanisms underlying their organization. In this work, we take a top-down approach and examine the micrometer-scale organization of diatoms from the Coscinodiscus family. We find two competing tendencies of organization, which appear to be controlled by distinct biological pathways. On one hand, micrometer-scale pores organize locally on a triangular lattice. On the other hand, lattice vectors tend to point globally toward a center of symmetry. This competition results in a frustrated triangular lattice, populated with geometrically necessary defects whose density increases near the center.


Assuntos
Parede Celular , Diatomáceas , Dióxido de Silício , Parede Celular/química , Diatomáceas/química , Nanoestruturas , Porosidade
7.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074782

RESUMO

Vivid, saturated structural colors are conspicuous and important features of many animals. A rich diversity of three-dimensional periodic photonic nanostructures is found in the chitinaceous exoskeletons of invertebrates. Three-dimensional photonic nanostructures have been described in bird feathers, but they are typically quasi-ordered. Here, we report bicontinuous single gyroid ß-keratin and air photonic crystal networks in the feather barbs of blue-winged leafbirds (Chloropsis cochinchinensis sensu lato), which have evolved from ancestral quasi-ordered channel-type nanostructures. Self-assembled avian photonic crystals may serve as inspiration for multifunctional applications, as they suggest efficient, alternative routes to single gyroid synthesis at optical length scales, which has been experimentally elusive.


Assuntos
Proteínas Aviárias/química , Evolução Biológica , Plumas/química , Nanoestruturas/química , Passeriformes , beta-Queratinas/química , Animais , Óptica e Fotônica
8.
Phys Rev Lett ; 131(20): 208201, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039453

RESUMO

Damage caused by freezing wet, porous materials is a widespread problem but is hard to predict or control. Here, we show that polycrystallinity significantly speeds up the stress buildup process that underpins this damage. Unfrozen water in grain-boundary grooves feeds ice growth at temperatures below the freezing temperature, leading to fast stress buildup. These stresses can build up to levels that can easily break many brittle materials. The dynamics of the process are very variable, which we ascribe to local differences in ice-grain orientation and to the surprising mobility of many grooves-which further accelerates stress buildup. Our Letter will help understand how freezing damage occurs and in developing accurate models and effective damage-mitigation strategies.

9.
Langmuir ; 39(41): 14626-14637, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37797324

RESUMO

Solutions of macromolecules can undergo liquid-liquid phase separation to form droplets with ultralow surface tension. Droplets with such low surface tension wet and spread over common surfaces such as test tubes and microscope slides, complicating in vitro experiments. The development of a universal super-repellent surface for macromolecular droplets has remained elusive because their ultralow surface tension requires low surface energies. Furthermore, the nonwetting of droplets containing proteins poses additional challenges because the surface must remain inert to a wide range of chemistries presented by the various amino acid side chains at the droplet surface. Here, we present a method to coat microscope slides with a thin transparent hydrogel that exhibits complete dewetting (contact angles θ ≈ 180°) and minimal pinning of phase-separated droplets in aqueous solution. The hydrogel is based on a swollen matrix of chemically cross-linked polyethylene glycol diacrylate of molecular weight 12 kDa (PEGDA), and can be prepared with basic chemistry laboratory equipment. The PEGDA hydrogel is a powerful tool for in vitro studies of weak interactions, dynamics, and the internal organization of phase-separated droplets in aqueous solutions.

10.
Soft Matter ; 19(23): 4385-4390, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37272410

RESUMO

Inhomogeneously swollen elastomers are an emergent class of materials, comprising elastic matrices with inclusion phases in the form of microgel particles or osmolytes. Inclusion phases can undergo osmotically driven swelling and deswelling over orders of magnitude. In the swollen state, the inclusions typically have negligible Young's modulus, and the matrix is strongly deformed. In that regime, the effective mechanical properties of the composite are governed by the matrix. Laying the groundwork for a generic analysis of inhomogeneously swollen elastomers, we develop a model based on incremental mean-field homogenization of a hyperelastic matrix. The framework allows for the computation of the macroscopic effective stiffness for arbitrary hyperelastic matrix materials. For an in-depth quantification of the local effective stiffness, we extend the concept of elastic stiffness maps to incompressible materials. For strain-stiffening materials, stiffness maps in the swollen state highlight pronounced radial stiffening with a non-monotonic change in stiffness in the hoop direction. Stiffening characteristics are sensitive to the form of constitutive models, which may be exploited in the design of hydrated actuators, soft composites and metamaterials. For validation, we apply this framework to a Yeoh material, and compare to recently published data. Model predictions agree well with experimental data on elastomers with highly swollen embedded microgel particles. We identify three distinct regimes related to an increasing degree of particle swelling: first, an initial decrease in composite stiffness is attributed to particle softening upon liquid intake. Second, dilute particle swelling leads to matrix stiffening dominating over particle softening, resulting in an increase in composite stiffness. Third, for swelling degrees beyond the dilute limit, particle interactions dominate further matrix stiffening.

11.
Soft Matter ; 19(40): 7717-7723, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37789800

RESUMO

Color can originate from wavelength-dependence in the absorption of pigments or the scattering of nanostructures. While synthetic colors are dominated by the former, vivid structural colors found in nature have inspired much research on the latter. However, many of the most vibrant colors in nature involve the interactions of structure and pigment. Here, we demonstrate that pigment can be exploited to efficiently create bright structural color at wavelengths outside its absorption band. We created pigment-enhanced Bragg reflectors by sequentially spin-coating layers of poly-vinyl alcohol (PVA) and polystyrene (PS) loaded with ß-carotene (BC). With only 10 double layers, we achieved a peak reflectance over 0.8 at 550 nm and normal incidence. A pigment-free multilayer made of the same materials would require 25 double layers to achieve the same reflectance. Further, pigment loading suppressed the Bragg reflector's characteristic iridescence. Using numerical simulations, we further show that similar pigment loadings could significantly expand the gamut of non-iridescent colors addressable by photonic glasses.

12.
Angew Chem Int Ed Engl ; 62(16): e202217683, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36802062

RESUMO

Synthetic methods to control the structure of materials at sub-micron scales are typically based on the self-assembly of structural building blocks with precise size and morphology. On the other hand, many living systems can generate structure across a broad range of length scales in one step directly from macromolecules, using phase separation. Here, we introduce and control structure at the nano- and microscales through polymerization in the solid state, which has the unusual capability of both triggering and arresting phase separation. In particular, we show that atom transfer radical polymerization (ATRP) enables control of nucleation, growth, and stabilization of phase-separated poly-methylmethacrylate (PMMA) domains in a solid polystyrene (PS) matrix. ATRP yields durable nanostructures with low size dispersity and high degrees of structural correlations. Furthermore, we demonstrate that the length scale of these materials is controlled by the synthesis parameters.

13.
Soft Matter ; 18(37): 7229-7235, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36102833

RESUMO

Inspired by the cellular design of plant tissue, we present an approach to make versatile, tough, highly water-swelling composites. We embed highly swelling hydrogel particles inside tough, water-permeable, elastomeric matrices. The resulting composites, which we call hydroelastomers, combine the properties of their parent phases. From their hydrogel component, the composites inherit the ability to highly swell in water. From the elastomeric component, the composites inherit excellent stretchability and fracture toughness, while showing little softening as they swell. Indeed, the fracture properties of the composite match those of the best-performing, tough hydrogels, exhibiting fracture energies of up to 10 kJ m-2. Our composites are straightforward to fabricate, based on widely-available materials, and can easily be molded or extruded to form shapes with complex swelling geometries. Furthermore, there is a large design space available for making hydroelastomers, since one can use any hydrogel as the dispersed phase in the composite, including hydrogels with stimuli-responsiveness. These features make hydroelastomers excellent candidates for use in soft robotics and swelling-based actuation, or as shape-morphing materials, while also being useful as hydrogel replacements in other fields.


Assuntos
Hidrogéis , Água
14.
J Am Chem Soc ; 143(9): 3439-3447, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33647198

RESUMO

The promise of crystal composites with direction-specific properties is an attractive prospect for diverse applications; however, synthetic strategies for realizing such composites remain elusive. Here, we demonstrate that anisotropic agarose gel networks can mechanically "mold" calcite crystal growth, yielding anisotropically structured, single-crystal composites. Drying and rehydration of agarose gel films result in the affine deformation of their fibrous networks to yield fiber alignment parallel to the drying plane. Precipitation of calcium carbonate within these anisotropic networks results in the formation of calcite crystal composite disks oriented parallel to the fibers. The morphology of the disks, revealed by nanocomputed tomography imaging, evolves with time and can be described by linear-elastic fracture mechanics theory, which depends on the ratio between the length of the crystal and the elastoadhesive length of the gel. Precipitation of calcite in uniaxially deformed agarose gel cylinders results in the formation of rice-grain-shaped crystals, suggesting the broad applicability of the approach. These results demonstrate how the anisotropy of compliant networks can translate into the desired crystal composite morphologies. This work highlights the important role organic matrices can play in mechanically "molding" biominerals and provides an exciting platform for fabricating crystal composites with direction-specific and emergent functional properties.


Assuntos
Carbonato de Cálcio/química , Géis/química , Sefarose/química , Anisotropia , Carbonato de Cálcio/síntese química , Cristalização
15.
Small ; 17(44): e2103061, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34558188

RESUMO

Polymers are essential components of many nanostructured materials. However, the refractive indices of common polymers fall in a relatively narrow range between 1.4 and 1.6. Here, it is demonstrated that loading commercially-available polymers with large concentrations of a plant-based pigment can effectively enhance their refractive index. For polystyrene (PS) loaded with 67 w/w% ß-carotene (BC), a peak value of 2.2 near the absorption edge at 531 nm is achieved, while maintaining values above 1.75 across longer wavelengths of the visible spectrum. Despite high pigment loadings, this blend maintains the thermoforming ability of PS, and BC remains molecularly dispersed. Similar results are demonstrated for the plant-derived polymer ethyl cellulose (EC). Since the refractive index enhancement is intimately connected to the introduction of strong absorption, it is best suited to applications where light travels short distances through the material, such as reflectors and nanophotonic systems. Enhanced reflectance from films is experimentally demonstrated, as large as sevenfold for EC at selected wavelengths. Theoretical calculations highlight that this simple strategy can significantly increase light scattering by nanoparticles and enhance the performance of Bragg reflectors.


Assuntos
Nanopartículas , Nanoestruturas , Polímeros , Poliestirenos , Refratometria
16.
Phys Rev Lett ; 127(20): 208001, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860052

RESUMO

When stretched in one direction, most solids shrink in the transverse directions. In soft silicone gels, however, we observe that small-scale topographical features grow upon stretching. A quantitative analysis of the topography shows that this counterintuitive response is nearly linear, allowing us to tackle it through a small-strain analysis. We find that the surprising increase of small-scale topography with stretch is due to a delicate interplay of the bulk and surface responses to strain. Specifically, we find that surface tension changes as the material is deformed. This response is expected on general grounds for solid materials, but challenges the standard description of gel and elastomer surfaces.

17.
Phys Rev Lett ; 126(15): 158004, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929254

RESUMO

Anisotropically wetting substrates enable useful control of droplet behavior across a range of applications. Usually, these involve chemically or physically patterning the substrate surface, or applying gradients in properties like temperature or electrical field. Here, we show that a flat, stretched, uniform soft substrate also exhibits asymmetric wetting, both in terms of how droplets slide and in their static shape. Droplet dynamics are strongly affected by stretch: glycerol droplets on silicone substrates with a 23% stretch slide 67% faster in the direction parallel to the applied stretch than in the perpendicular direction. Contrary to classical wetting theory, static droplets in equilibrium appear elongated, oriented parallel to the stretch direction. Both effects arise from droplet-induced deformations of the substrate near the contact line.

18.
Soft Matter ; 17(5): 1189-1193, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33533787

RESUMO

Programming supramolecular assembly in the time domain is a fundamental aspect of the design of biomimetic materials. We achieved the time-controlled sol-gel transition of a poly(vinyl alcohol)-iodine supramolecular complex by generating iodine in situ with a clock reaction. We demonstrate that both the gelation time and the mechanical properties of the resulting hydrogel can be tuned by properly selecting the clock parameters or through competitive iodine complexation.

19.
Soft Matter ; 17(23): 5772-5779, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34027537

RESUMO

Structural colors are produced by wavelength-dependent scattering of light from nanostructures. While living organisms often exploit phase separation to directly assemble structurally colored materials from macromolecules, synthetic structural colors are typically produced in a two-step process involving the sequential synthesis and assembly of building blocks. Phase separation is attractive for its simplicity, but applications are limited due to a lack of robust methods for its control. A central challenge is to arrest phase separation at the desired length scale. Here, we show that solid-state polymerization-induced phase separation can produce stable structures at optical length scales. In this process, a polymeric solid is swollen and softened with a second monomer. During its polymerization, the two polymers become immiscible and phase separate. As free monomer is depleted, the host matrix resolidifies and arrests coarsening. The resulting polymeric composites have a blue or white appearance. We compare these biomimetic nanostructures to those in structurally-colored feather barbs, and demonstrate the flexibility of this approach by producing structural color in filaments and large sheets.


Assuntos
Plumas , Nanoestruturas , Animais , Cor , Polimerização , Polímeros
20.
Soft Matter ; 17(6): 1655-1662, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33367441

RESUMO

Phase separated macromolecules play essential roles in many biological and synthetic systems. Physical characterization of these systems can be challenging because of limited sample volumes, particularly for phase-separated proteins. Here, we demonstrate that a classic method for measuring the surface tension of liquid droplets, based on the analysis of the shape of a sessile droplet, can be effectively scaled down to measure the interfacial tension between a macromolecule-rich droplet phase and its co-existing macromolecule-poor continuous phase. The connection between droplet shape and surface tension relies on the density difference between the droplet and its surroundings. This can be determined with small sample volumes in the same setup by measuring the droplet sedimentation velocity. An interactive MATLAB script for extracting the capillary length from a droplet image is included in the ESI.


Assuntos
Polímeros , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA