Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(42): 13099-104, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26432880

RESUMO

Classical feed-forward inhibition involves an excitation-inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses.


Assuntos
Cerebelo/fisiologia , Grânulos Citoplasmáticos/fisiologia , Complexo de Golgi/fisiologia , Animais , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
2.
Neural Comput ; 29(7): 1745-1768, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28562220

RESUMO

Knowledge of synaptic input is crucial for understanding synaptic integration and ultimately neural function. However, in vivo, the rates at which synaptic inputs arrive are high, so that it is typically impossible to detect single events. We show here that it is nevertheless possible to extract the properties of the events and, in particular, to extract the event rate, the synaptic time constants, and the properties of the event size distribution from in vivo voltage-clamp recordings. Applied to cerebellar interneurons, our method reveals that the synaptic input rate increases from 600 Hz during rest to 1000 Hz during locomotion, while the amplitude and shape of the synaptic events are unaffected by this state change. This method thus complements existing methods to measure neural function in vivo.


Assuntos
Interneurônios/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Sinapses/fisiologia , Potenciais de Ação , Animais , Biofísica , Cerebelo/citologia , Simulação por Computador , Estimulação Elétrica , Técnicas de Patch-Clamp
3.
Eur J Neurosci ; 42(5): 2125-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25943794

RESUMO

Functional magnetic resonance imaging (fMRI) of learned behaviour in 'awake rodents' provides the opportunity for translational preclinical studies into the influence of pharmacological and genetic manipulations on brain function. fMRI has recently been employed to investigate learned behaviour in awake rats. Here, this methodology is translated to mice, so that future fMRI studies may exploit the vast number of genetically modified mouse lines that are available. One group of mice was conditioned to associate a flashing light (conditioned stimulus, CS) with foot shock (PG; paired group), and another group of mice received foot shock and flashing light explicitly unpaired (UG; unpaired group). The blood oxygen level-dependent signal (proxy for neuronal activation) in response to the CS was measured 24 h later in awake mice from the PG and UG using fMRI. The amygdala, implicated in fear processing, was activated to a greater degree in the PG than in the UG in response to the CS. Additionally, the nucleus accumbens was activated in the UG in response to the CS. Because the CS signalled an absence of foot shock in the UG, it is possible that this region is involved in processing the safety aspect of the CS. To conclude, the first use of fMRI to visualise brain activation in awake mice that are completing a learned emotional task is reported. This work paves the way for future preclinical fMRI studies to investigate genetic and environmental influences on brain function in transgenic mouse models of disease and aging.


Assuntos
Aprendizagem por Associação/fisiologia , Encéfalo/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Imageamento por Ressonância Magnética/métodos , Animais , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Eletrochoque , Estudos de Viabilidade , , Masculino , Camundongos Endogâmicos C57BL , Movimento (Física) , Vias Neurais/fisiologia , Oxigênio/sangue , Estimulação Luminosa , Processamento de Sinais Assistido por Computador , Percepção Visual/fisiologia , Vigília
4.
Nat Genet ; 38(7): 801-6, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16751771

RESUMO

Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR beta subunit (GLRB), gephyrin (GPHN) and RhoGEF collybistin (ARHGEF9). However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Mutação , Reflexo de Sobressalto/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Feminino , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Proteínas da Membrana Plasmática de Transporte de Glicina/fisiologia , Humanos , Técnicas In Vitro , Recém-Nascido , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/metabolismo , Terminações Pré-Sinápticas/fisiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reflexo de Sobressalto/fisiologia , Transfecção , Xenopus laevis
5.
Sci Rep ; 14(1): 14315, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906952

RESUMO

Head-fixation of mice enables high-resolution monitoring of neuronal activity coupled with precise control of environmental stimuli. Virtual reality can be used to emulate the visual experience of movement during head fixation, but a low inertia floating real-world environment (mobile homecage, MHC) has the potential to engage more sensory modalities and provide a richer experimental environment for complex behavioral tasks. However, it is not known whether mice react to this adapted environment in a similar manner to real environments, or whether the MHC can be used to implement validated, maze-based behavioral tasks. Here, we show that hippocampal place cell representations are intact in the MHC and that the system allows relatively long (20 min) whole-cell patch clamp recordings from dorsal CA1 pyramidal neurons, revealing sub-threshold membrane potential dynamics. Furthermore, mice learn the location of a liquid reward within an adapted T-maze guided by 2-dimensional spatial navigation cues and relearn the location when spatial contingencies are reversed. Bilateral infusions of scopolamine show that this learning is hippocampus-dependent and requires intact cholinergic signalling. Therefore, we characterize the MHC system as an experimental tool to study sub-threshold membrane potential dynamics that underpin complex navigation behaviors.


Assuntos
Hipocampo , Aprendizagem em Labirinto , Navegação Espacial , Animais , Camundongos , Navegação Espacial/fisiologia , Masculino , Hipocampo/fisiologia , Células Piramidais/fisiologia , Camundongos Endogâmicos C57BL , Potenciais da Membrana/fisiologia , Região CA1 Hipocampal/fisiologia , Realidade Virtual , Escopolamina/farmacologia , Técnicas de Patch-Clamp/métodos
6.
J Neurosci ; 32(32): 11132-43, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22875944

RESUMO

Tonic inhibition is a key regulator of neuronal excitability and network function in the brain, but its role in sensory information processing remains poorly understood. The cerebellum is a favorable model system for addressing this question as granule cells, which form the input layer of the cerebellar cortex, permit high-resolution patch-clamp recordings in vivo, and are the only neurons in the cerebellar cortex that express the α6δ-containing GABA(A) receptors mediating tonic inhibition. We investigated how tonic inhibition regulates sensory information transmission in the rat cerebellum by using a combination of intracellular recordings from granule cells and molecular layer interneurons in vivo, selective pharmacology, and in vitro dynamic clamp experiments. We show that blocking tonic inhibition significantly increases the spontaneous firing rate of granule cells while only moderately increasing sensory-evoked spike output. In contrast, enhancing tonic inhibition reduces the spike probability in response to sensory stimulation with minimal effect on the spontaneous spike rate. Both manipulations result in a reduction in the signal-to-noise ratio of sensory transmission in granule cells and of parallel fiber synaptic input to downstream molecular layer interneurons. These results suggest that under basal conditions the level of tonic inhibition in vivo enhances the fidelity of sensory information transmission through the input layer of the cerebellar cortex.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebelar/citologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Sensação/fisiologia , Vibrissas/inervação , Potenciais de Ação/efeitos dos fármacos , Vias Aferentes/fisiologia , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Lateralidade Funcional , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Isoxazóis/farmacologia , Ketamina/farmacologia , Masculino , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Estimulação Física , Piridazinas/farmacologia , Ratos , Ratos Sprague-Dawley
7.
Nature ; 450(7173): 1245-8, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18097412

RESUMO

Understanding the transmission of sensory information at individual synaptic connections requires knowledge of the properties of presynaptic terminals and their patterns of firing evoked by sensory stimuli. Such information has been difficult to obtain because of the small size and inaccessibility of nerve terminals in the central nervous system. Here we show, by making direct patch-clamp recordings in vivo from cerebellar mossy fibre boutons-the primary source of synaptic input to the cerebellar cortex-that sensory stimulation can produce bursts of spikes in single boutons at very high instantaneous firing frequencies (more than 700 Hz). We show that the mossy fibre-granule cell synapse exhibits high-fidelity transmission at these frequencies, indicating that the rapid burst of excitatory postsynaptic currents underlying the sensory-evoked response of granule cells can be driven by such a presynaptic spike burst. We also demonstrate that a single mossy fibre can trigger action potential bursts in granule cells in vitro when driven with in vivo firing patterns. These findings suggest that the relay from mossy fibre to granule cell can act in a 'detonator' fashion, such that a single presynaptic afferent may be sufficient to transmit the sensory message. This endows the cerebellar mossy fibre system with remarkable sensitivity and high fidelity in the transmission of sensory information.


Assuntos
Córtex Cerebelar/citologia , Fibras Nervosas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica , Potenciais de Ação/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
8.
J Neurosci Methods ; 386: 109779, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621552

RESUMO

BACKGROUND: Touchscreen-based behavioral assays provide a robust method for assessing cognitive behavior in rodents, offering great flexibility and translational potential. The development of touchscreen assays presents a significant programming and mechanical engineering challenge, where commercial solutions can be prohibitively expensive and open-source solutions are underdeveloped, with limited adaptability. NEW METHOD: Here, we present Visiomode (www.visiomode.org), an open-source platform for building rodent touchscreen-based behavioral tasks. Visiomode leverages the inherent flexibility of touchscreens to offer a simple yet adaptable software and hardware platform. The platform is built on the Raspberry Pi computer combining a web-based interface and powerful plug-in system with an operant chamber that can be adapted to generate a wide range of behavioral tasks. RESULTS: As a proof of concept, we use Visiomode to build both simple stimulus-response and more complex visual discrimination tasks, showing that mice display rapid sensorimotor learning including switching between different motor responses (i.e., nose poke versus reaching). COMPARISON WITH EXISTING METHODS: Commercial solutions are the 'go to' for rodent touchscreen behaviors, but the associated costs can be prohibitive, limiting their uptake by the wider neuroscience community. While several open-source solutions have been developed, efforts so far have focused on reducing the cost, rather than promoting ease of use and adaptability. Visiomode addresses these unmet needs providing a low-cost, extensible platform for creating touchscreen tasks. CONCLUSIONS: Developing an open-source, rapidly scalable and low-cost platform for building touchscreen-based behavioral assays should increase uptake across the science community and accelerate the investigation of cognition, decision-making and sensorimotor behaviors both in health and disease.


Assuntos
Aprendizagem , Roedores , Camundongos , Animais , Aprendizagem/fisiologia , Software , Cognição , Computadores
9.
J Neurosci Methods ; 390: 109827, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871604

RESUMO

BACKGROUND: In vivo patch-clamp recording techniques provide access to the sub- and suprathreshold membrane potential dynamics of individual neurons during behavior. However, maintaining recording stability throughout behavior is a significant challenge, and while methods for head restraint are commonly used to enhance stability, behaviorally related brain movement relative to the skull can severely impact the success rate and duration of whole-cell patch-clamp recordings. NEW METHOD: We developed a low-cost, biocompatible, and 3D-printable cranial implant capable of locally stabilizing brain movement, while permitting equivalent access to the brain when compared to a conventional craniotomy. RESULTS: Experiments in head-restrained behaving mice demonstrate that the cranial implant can reliably reduce the amplitude and speed of brain displacements, significantly improving the success rate of recordings across repeated bouts of motor behavior. COMPARISON WITH EXISTING METHOD(S): Our solution offers an improvement on currently available strategies for brain stabilization. Due to its small size, the implant can be retrofitted to most in vivo electrophysiology recording setups, providing a low cost, easily implementable solution for increasing intracellular recording stability in vivo. CONCLUSIONS: By facilitating stable whole-cell patch-clamp recordings in vivo, biocompatible 3D printed implants should accelerate the investigation of single neuron computations underlying behavior.


Assuntos
Neurônios , Roedores , Camundongos , Animais , Neurônios/fisiologia , Potenciais da Membrana/fisiologia , Encéfalo/fisiologia , Crânio/cirurgia
10.
Cell Rep ; 42(6): 112574, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37300831

RESUMO

Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity, and dendritic synapse locations are constrained by experimental data. The model includes long-range inputs from seven thalamic and cortical regions and noradrenergic inputs. Connectivity depends on cell class and cortical depth at sublaminar resolution. The model accurately predicts in vivo layer- and cell-type-specific responses (firing rates and LFP) associated with behavioral states (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor blockade and thalamus inactivation). We generate mechanistic hypotheses underlying the observed activity and analyzed low-dimensional population latent dynamics. This quantitative theoretical framework can be used to integrate and interpret M1 experimental data and sheds light on the cell-type-specific multiscale dynamics associated with several experimental conditions and behaviors.


Assuntos
Córtex Motor , Camundongos , Animais , Córtex Motor/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Sinapses/fisiologia , Biofísica
12.
Cell Rep ; 39(6): 110801, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545038

RESUMO

Motor cortex generates descending output necessary for executing a wide range of limb movements. Although movement-related activity has been described throughout motor cortex, the spatiotemporal organization of movement-specific signaling in deep layers remains largely unknown. Here we record layer 5B population dynamics in the caudal forelimb area of motor cortex while mice perform a forelimb push/pull task and find that most neurons show movement-invariant responses, with a minority displaying movement specificity. Using cell-type-specific imaging, we identify that invariant responses dominate pyramidal tract (PT) neuron activity, with a small subpopulation representing movement type, whereas a larger proportion of intratelencephalic (IT) neurons display movement-type-specific signaling. The proportion of IT neurons decoding movement-type peaks prior to movement initiation, whereas for PT neurons, this occurs during movement execution. Our data suggest that layer 5B population dynamics largely reflect movement-invariant signaling, with information related to movement-type being routed through relatively small, distributed subpopulations of projection neurons.


Assuntos
Córtex Motor , Animais , Membro Anterior/fisiologia , Camundongos , Córtex Motor/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Tratos Piramidais/fisiologia
13.
Neuron ; 109(14): 2326-2338.e8, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34146469

RESUMO

Executing learned motor behaviors often requires the transformation of sensory cues into patterns of motor commands that generate appropriately timed actions. The cerebellum and thalamus are two key areas involved in shaping cortical output and movement, but the contribution of a cerebellar-thalamocortical pathway to voluntary movement initiation remains poorly understood. Here, we investigated how an auditory "go cue" transforms thalamocortical activity patterns and how these changes relate to movement initiation. Population responses in dentate/interpositus-recipient regions of motor thalamus reflect a time-locked increase in activity immediately prior to movement initiation that is temporally uncoupled from the go cue, indicative of a fixed-latency feedforward motor timing signal. Blocking cerebellar or motor thalamic output suppresses movement initiation, while stimulation triggers movements in a behavioral context-dependent manner. Our findings show how cerebellar output, via the thalamus, shapes cortical activity patterns necessary for learned context-dependent movement initiation.


Assuntos
Cerebelo/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Animais , Comportamento Animal/fisiologia , Camundongos , Vias Neurais/fisiologia
14.
J Neurosci ; 27(46): 12464-74, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18003824

RESUMO

In the cerebellum, the process of retrograde signaling via presynaptic receptors is important for the induction of short- and long-term changes in inhibitory synaptic transmission at interneuron-Purkinje cell (PC) synapses. Endocannabinoids, by activating presynaptic CB1 receptors, mediate a short-term decrease in inhibitory synaptic efficacy, whereas glutamate, acting on presynaptic NMDA receptors, induces a longer-latency sustained increase in GABA release. We now demonstrate that either low-frequency climbing fiber stimulation or direct somatic depolarization of Purkinje cells results in SNARE-dependent vesicular release of glutamate from the soma and dendrites of PCs. The activity-dependent release of glutamate caused the activation of postsynaptic metabotropic glutamate receptor 1 (mGluR1) on PC somatodendritic membranes, resulting in the cooperative release of endocannabinoids and an mGluR1-mediated slow membrane conductance. The activity of excitatory amino acid transporters regulated the spatial spread of glutamate and thus the extent of PC mGluR1 activation. We propose that activity-dependent somatodendritic glutamate release and autocrine activation of mGluR1 on PCs provides a powerful homeostatic mechanism to dynamically regulate inhibitory synaptic transmission in the cerebellar cortex.


Assuntos
Comunicação Autócrina/fisiologia , Dendritos/metabolismo , Ácido Glutâmico/metabolismo , Inibição Neural/fisiologia , Células de Purkinje/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Vias Aferentes/fisiologia , Animais , Animais Recém-Nascidos , Comunicação Autócrina/efeitos dos fármacos , Moduladores de Receptores de Canabinoides/metabolismo , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/fisiologia , Dendritos/efeitos dos fármacos , Estimulação Elétrica , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Inibição Neural/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Células de Purkinje/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Proteínas SNARE/metabolismo , Membranas Sinápticas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
15.
Curr Opin Neurobiol ; 16(3): 312-22, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16713246

RESUMO

Long-term plasticity typically relies on postsynaptic NMDA receptors to detect the coincidence of pre- and postsynaptic activity. Recent studies, however, have revealed forms of plasticity that depend on coincidence detection by presynaptic NMDA receptors. In the amygdala, cortical afferent associative presynaptic long-term potentiation (LTP) requires activation of presynaptic NMDA receptors by simultaneous thalamic and cortical afferents. Surprisingly, both types of afferent can also undergo postsynaptically induced NMDA-receptor-dependent LTP. In the neocortex, spike-timing-dependent long-term depression (LTD) requires simultaneous activation of presynaptic NMDA autoreceptors and retrograde signalling by endocannabinoids. In cerebellar LTD, presynaptic NMDA receptor activation suggests that similar presynaptic mechanisms may exist. Recent studies also indicate the existence of presynaptic coincidence detection that is independent of NMDA receptors, suggesting that such mechanisms have a widespread role in plasticity.


Assuntos
Encéfalo/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Encéfalo/anatomia & histologia , Humanos , Potenciação de Longa Duração/fisiologia , Vias Neurais/anatomia & histologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/fisiologia , Fatores de Tempo
16.
Nat Neurosci ; 7(5): 525-33, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15097992

RESUMO

Synaptic inhibition is a vital component in the control of cell excitability within the brain. Here we report a newly identified form of inhibitory synaptic plasticity, termed depolarization-induced potentiation of inhibition, in rodents. This mechanism strongly potentiated synaptic transmission from interneurons to Purkinje cells after the termination of depolarization-induced suppression of inhibition. It was triggered by an elevation of Ca(2+) in Purkinje cells and the subsequent retrograde activation of presynaptic NMDA receptors. These glutamate receptors promoted the spontaneous release of Ca(2+) from presynaptic ryanodine-sensitive Ca(2+) stores. Thus, NMDA receptor-mediated facilitation of transmission at this synapse provides a regulatory mechanism that can dynamically alter the synaptic efficacy at inhibitory synapses.


Assuntos
Cerebelo/citologia , Ácido Egtázico/análogos & derivados , Interneurônios/metabolismo , Células de Purkinje/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Cádmio/farmacologia , Cálcio/metabolismo , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ácido Egtázico/farmacologia , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/efeitos da radiação , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glutamato Descarboxilase/metabolismo , Imuno-Histoquímica/métodos , Técnicas In Vitro , Isoenzimas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos da radiação , N-Metilaspartato/farmacologia , Inibição Neural/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Piperidinas/farmacologia , Terminações Pré-Sinápticas/metabolismo , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Rimonabanto , Rianodina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Transmissão Sináptica/fisiologia , Sinaptofisina/metabolismo , Tetrodotoxina/farmacologia , Fatores de Tempo
17.
Cell Rep ; 22(7): 1722-1733, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29444426

RESUMO

Cerebellar climbing-fiber-mediated complex spikes originate from neurons in the inferior olive (IO), are critical for motor coordination, and are central to theories of cerebellar learning. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels expressed by IO neurons have been considered as pacemaker currents important for oscillatory and resonant dynamics. Here, we demonstrate that in vitro, network actions of HCN1 channels enable bidirectional glutamatergic synaptic responses, while local actions of HCN1 channels determine the timing and waveform of synaptically driven action potentials. These roles are distinct from, and may complement, proposed pacemaker functions of HCN channels. We find that in behaving animals HCN1 channels reduce variability in the timing of cerebellar complex spikes, which serve as a readout of IO spiking. Our results suggest that spatially distributed actions of HCN1 channels enable the IO to implement network-wide rules for synaptic integration that modulate the timing of cerebellar climbing fiber signals.


Assuntos
Potenciais de Ação/fisiologia , Cerebelo/citologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Sinapses/metabolismo , Animais , Canais de Cálcio/metabolismo , Junções Comunicantes/metabolismo , Deleção de Genes , Ácido Glutâmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Movimento , Neurônios/metabolismo , Fatores de Tempo , Vigília
18.
Cold Spring Harb Protoc ; 2017(7): pdb.top092288, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679719

RESUMO

From patch-clamp techniques to recombinant DNA technologies, three-dimensional protein modeling, and optogenetics, diverse and sophisticated methods have been used to study ion channels and how they determine the electrical properties of cells.


Assuntos
Técnicas Citológicas/métodos , Variação Genética , Canais Iônicos/genética , Canais Iônicos/metabolismo , Técnicas Citológicas/história , História do Século XX , História do Século XXI
19.
Nat Commun ; 7: 13722, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976716

RESUMO

Feedforward excitatory and inhibitory circuits regulate cerebellar output, but how these circuits interact to shape the somatodendritic excitability of Purkinje cells during motor behaviour remains unresolved. Here we perform dendritic and somatic patch-clamp recordings in vivo combined with optogenetic silencing of interneurons to investigate how dendritic excitation and inhibition generates bidirectional (that is, increased or decreased) Purkinje cell output during self-paced locomotion. We find that granule cells generate a sustained depolarization of Purkinje cell dendrites during movement, which is counterbalanced by variable levels of feedforward inhibition from local interneurons. Subtle differences in the dendritic excitation-inhibition balance generate robust, bidirectional changes in simple spike (SSp) output. Disrupting this balance by selectively silencing molecular layer interneurons results in unidirectional firing rate changes, increased SSp regularity and disrupted locomotor behaviour. Our findings provide a mechanistic understanding of how feedforward excitatory and inhibitory circuits shape Purkinje cell output during motor behaviour.


Assuntos
Dendritos/fisiologia , Locomoção/fisiologia , Atividade Motora/fisiologia , Inibição Neural/fisiologia , Células de Purkinje/fisiologia , Animais , Cerebelo/citologia , Cerebelo/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/fisiologia , Masculino , Camundongos , Optogenética , Técnicas de Patch-Clamp
20.
J Neurosci ; 24(25): 5816-26, 2004 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-15215304

RESUMO

Glycine receptors (GlyRs) and specific subtypes of GABA(A) receptors are clustered at synapses by the multidomain protein gephyrin, which in turn is translocated to the cell membrane by the GDP-GTP exchange factor collybistin. We report the characterization of several new variants of collybistin, which are created by alternative splicing of exons encoding an N-terminal src homology 3 (SH3) domain and three alternate C termini (CB1, CB2, and CB3). The presence of the SH3 domain negatively regulates the ability of collybistin to translocate gephyrin to submembrane microaggregates in transfected mammalian cells. Because the majority of native collybistin isoforms appear to harbor the SH3 domain, this suggests that collybistin activity may be regulated by protein-protein interactions at the SH3 domain. We localized the binding sites for collybistin and the GlyR beta subunit to the C-terminal MoeA homology domain of gephyrin and show that multimerization of this domain is required for collybistin-gephyrin and GlyR-gephyrin interactions. We also demonstrate that gephyrin clustering in recombinant systems and cultured neurons requires both collybistin-gephyrin interactions and an intact collybistin pleckstrin homology domain. The vital importance of collybistin for inhibitory synaptogenesis is underlined by the discovery of a mutation (G55A) in exon 2 of the human collybistin gene (ARHGEF9) in a patient with clinical symptoms of both hyperekplexia and epilepsy. The clinical manifestation of this collybistin missense mutation may result, at least in part, from mislocalization of gephyrin and a major GABA(A) receptor subtype.


Assuntos
Proteínas de Transporte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Encéfalo/citologia , Proteínas de Transporte/genética , Células Cultivadas , Epilepsia/complicações , Epilepsia/genética , Éxons , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Mutação , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Receptores de Glicina/metabolismo , Reflexo de Sobressalto , Fatores de Troca de Nucleotídeo Guanina Rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA