Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 203: 108064, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311230

RESUMO

Protists in general comprise about one-third of the parasitic species infecting arthropod vectors, the role of free-living and epibiotic ciliates on mosquitoes have been insufficiently studied either due to their low pathogenicity or facultative parasites. Studies have shown that exposure of Paramecium ciliate protists, like Vorticella species, to first instar Culex nigripalpus Theobald, larvae delayed larval development and reduced biomass of emerged adults due to competition for food sources like bacteria and other microbes essential to mosquito growth and survival. Thus, we report on the capacity of a Vorticella sp. protist's ability to cross-infect host species and parasitize multiple mosquito larvae. The unique adapted behavior with the ability to remain on the exuviae in tree hole habitats provide a novel delivery system to develop products for target species-specific mosquitocides, larvicides, or viricides to be applied and sustained in aquatic systems.


Assuntos
Aedes , Culex , Oligoimenóforos , Animais , Mosquitos Vetores , Controle de Mosquitos , Larva
2.
Microb Ecol ; 74(4): 979-989, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492989

RESUMO

Microbiota associated with mosquito vector populations impact several traits of mosquitoes, including survival, reproduction, control, and immunity against pathogens. The influence of seasonal variations and mosquito species on mosquito gut microbiota is poorly understood. We sought to determine whether the mosquito microbiota associated with immature stages of two congeners (Culex coronator and Culex nigripalpus) differ temporally and between the two species. Using high throughput 16S rRNA gene sequence analysis, we characterized bacterial and archaeal communities found in the immature stages of the two Culex mosquito species sampled over three seasons to compare the diversity of bacteria between the two species. Beta diversity analyses of the larval microbiota sequences revealed that the two Culex species differed significantly, both temporally within each species and between the two species. Bacteria in Cx. coronator larvae were dominated by Alphaproteobacteria, mainly associated with Roseoccocus and unidentified species of Rhizobiales, and two unidentified species of Cyanobacteria. In contrast, Cx. nigripalpus was dominated by Thorsellia anophelis (Gammaproteobacteria), Clostridium, an unidentified species of Ruminococcacae (Clostridiales), and additional unidentified species associated with Erysipelotrichaceae (Erysipelotrichales), Bacteroidales, and Mollicutes. Results of our study revealed both seasonal and interspecies differences in bacterial community composition associated with the immature stages of Cx. coronator and Cx. nigripalpus vector populations in Florida. These results have important implications for our understanding of the underlying factors of variations in disease transmission among seasons, susceptibility to various pesticides, and other biotic factors, including the role of the microbiota on the spread of invasive species. In addition, our results suggest close associations of certain bacteria species with each of the two Culex species that will be further targeted for their potential in the development of microbial-based control strategies.


Assuntos
Archaea/classificação , Bactérias/classificação , Culex/microbiologia , Microbioma Gastrointestinal , Animais , Archaea/genética , Bactérias/genética , Culex/crescimento & desenvolvimento , DNA Arqueal/genética , DNA Bacteriano/genética , Florida , Sequenciamento de Nucleotídeos em Larga Escala , Espécies Introduzidas , Larva/crescimento & desenvolvimento , Larva/microbiologia , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/microbiologia , Pupa/crescimento & desenvolvimento , Pupa/microbiologia , RNA Ribossômico 16S/genética , Estações do Ano
3.
BMC Microbiol ; 15: 140, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26205080

RESUMO

BACKGROUND: The native microflora associated with mosquitoes have important roles in mosquito development and vector competence. Sequencing of bacterial V3 region from 16S rRNA genes across the developmental stages of Culex mosquitoes (early and late larval instars, pupae and adults) was used to test the hypothesis that bacteria found in the larval stage of Culex are transstadially transmitted to the adult stage, and to compare the microbiomes of field-collected versus laboratory-reared mosquitoes. RESULTS: Beta diversity analysis revealed that bacterial community structure differed among three life stages (larvae, pupae and adults) of Culex tarsalis. Although only ~2% of the total number of bacterial OTUs were found in all stages, sequences from these OTUs accounted for nearly 82% of the total bacterial sequences recovered from all stages. Thorsellia (Gammaproteobacteria) was the most abundant bacterial taxon found across all developmental stages of field-collected Culex mosquitoes, but was rare in mosquitoes from laboratory-reared colonies. The proportion of Thorsellia sequences in the microbiomes of mosquito life stages varied ontogenetically with the greatest proportions recovered from the pupae of C. tarsalis and the lowest from newly emerged adults. The microbiome of field-collected late instar larvae was not influenced significantly by differences in the microbiota of the habitat due to habitat age or biopesticide treatments. The microbiome diversity was the greatest in the early instar larvae and the lowest in laboratory-reared mosquitoes. CONCLUSIONS: Bacterial communities in early instar C. tarsalis larvae were significantly more diverse when compared to late instar larvae, pupae and newly emerged adults. Some of the bacterial OTUs found in the early instar larvae were also found across developmental stages. Thorsellia dominated the bacterial communities in field-collected immature stages but occurred at much lower relative abundance in adults. Differences in microbiota observed in larval habitats did not influence bacterial community profiles of late instar larvae or adults. However, bacterial communities in laboratory-reared C. tarsalis larvae differed significantly from the field. Determining the role of Thorsellia in mosquitoes and its distribution across different species of mosquitoes warrants further investigation.


Assuntos
Culex/crescimento & desenvolvimento , Culex/microbiologia , Microbiota , Animais , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Trato Gastrointestinal/microbiologia , Larva/microbiologia , Dados de Sequência Molecular , Filogenia , Pupa/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
PLoS Negl Trop Dis ; 16(11): e0010907, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36374939

RESUMO

Among disease vectors, Aedes aegypti (L.) (Diptera: Culicidae) is one of the most insidious species in the world. The disease burden created by this species has dramatically increased in the past 50 years, and during this time countries have relied on pesticides for control and prevention of viruses borne by Ae. aegypti. The small number of available insecticides with different modes of action had led to increases in insecticide resistance, thus, strategies, like the "Incompatible Insect Technique" using Wolbachia's cytoplasmic incompatibility are desirable. We evaluated the effect of releases of Wolbachia infected Ae. aegypti males on populations of wild Ae. aegypti in the metropolitan area of Houston, TX. Releases were conducted by the company MosquitoMate, Inc. To estimate mosquito population reduction, we used a mosquito abundance Bayesian hierarchical estimator that accounted for inefficient trapping. MosquitoMate previously reported a reduction of 78% for an intervention conducted in Miami, FL. In this experiment we found a reduction of 93% with 95% credibility intervals of 86% and 96% after six weeks of continual releases. A similar result was reported by Verily Life Sciences, 96% [94%, 97%], in releases made in Fresno, CA.


Assuntos
Aedes , Controle Biológico de Vetores , Wolbachia , Animais , Masculino , Aedes/microbiologia , Teorema de Bayes , Mosquitos Vetores , Texas
5.
J Med Entomol ; 57(6): 1920-1929, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32574364

RESUMO

Mosquito-borne pathogens contribute significantly to the global burden of infectious diseases and are a continuing public health concern in the United States. Blood feeding by vector mosquitoes is a critical step in the transmission of human pathogens. Continuous surveillance of mosquito feeding patterns, especially in major population centers, is necessary for sustainable, effective control strategies. To better understand female feeding habits in Harris County, TX, we trapped mosquitoes from various locations, distributed among urban and semi-urban environments. Bloodmeal hosts were determined using a cytochrome C oxidase I DNA barcoding strategy. We identified a diverse array of vertebrate hosts with a high degree of avian host utilization, most surprisingly from anthropophilic species like Aedes aegypti (L.). We also detected sequences from two different vertebrate hosts in about half of specimens examined, suggesting that multiple bloodmeals had been acquired in the same feeding cycle by a sizable fraction of females in both urban and semi-urban locations. The high proportion of feeding on domestic chickens may indicate that a significant number of homeowners are rearing chickens within close proximity to study trap sites. As non-amplifying hosts, chickens may have a diluting effect on West Nile virus, as well as a zooprophylactic effect in their immediate vicinities. Ultimately, spatial and temporal host utilization patterns add insight into potential disease transmission dynamics, thereby informing vector control strategies in Harris County and other metropolitan areas.


Assuntos
Culicidae/fisiologia , Mosquitos Vetores/fisiologia , Aedes/fisiologia , Animais , Culex/fisiologia , Comportamento Alimentar , Feminino , Texas
6.
PeerJ ; 6: e6168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30643680

RESUMO

Although mosquito microbiota are known to influence reproduction, nutrition, disease transmission, and pesticide resistance, the relationship between host-associated microbial community composition and geographical location is poorly understood. To begin addressing this knowledge gap, we characterized microbiota associated with adult females of Culex nigripalpus mosquito vectors of Saint Louis Encephalitis and West Nile viruses sampled from three locations in Florida (Vero Beach, Palmetto Inland, and Palmetto Coast). High-throughput sequencing of PCR-amplified 16S rRNA genes demonstrated significant differences among microbial communities of mosquitoes sampled from the three locations. Mosquitoes from Vero Beach (east coast Florida) were dominated by uncultivated Asaia sp. (Alphaproteobacteria), whereas microbiota associated with mosquitoes collected from two mosquito populations at Palmetto (west coast Florida) sites were dominated by uncultured Spironema culicis (Spirochaetes), Salinisphaera hydrothermalis (Gammaproteobacteria), Spiroplasma (Mollicutes), uncultured Enterobacteriaceae, Candidatus Megaira (Alphaproteobacteria; Rickettsiae), and Zymobacter (Gammaproteobacteria). The variation in taxonomic profiles of Cx. nigripalpus gut microbial communities, especially with respect to dominating taxa, is a potentially critical factor in understanding disease transmission and mosquito susceptibility to insecticides among different mosquito populations.

7.
Ecol Evol ; 9(10): 6148-6156, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31161026

RESUMO

The mosquitoes Aedes aegypti (L.) and Ae. albopictus Skuse are the major vectors of dengue, Zika, yellow fever, and chikungunya viruses worldwide. Wolbachia, an endosymbiotic bacterium present in many insects, is being utilized in novel vector control strategies to manipulate mosquito life history and vector competence to curb virus transmission. Earlier studies have found that Wolbachia is commonly detected in Ae. albopictus but rarely detected in Ae. aegypti. In this study, we used a two-step PCR assay to detect Wolbachia in wild-collected samples of Ae. aegypti. The PCR products were sequenced to validate amplicons and identify Wolbachia strains. A loop-mediated isothermal amplification (LAMP) assay was developed and used for detecting Wolbachia in selected mosquito specimens as well. We found Wolbachia in 85/148 (57.4%) wild Ae. aegypti specimens from various cities in New Mexico, and in 2/46 (4.3%) from St. Augustine, Florida. Wolbachia was not detected in 94 samples of Ae. aegypti from Deer Park, Harris County, Texas. Wolbachia detected in Ae. aegypti from both New Mexico and Florida was the wAlbB strain of Wolbachia pipientis. A Wolbachia-positive colony of Ae. aegypti was established from pupae collected in Las Cruces, New Mexico, in 2018. The infected females of this strain transmitted Wolbachia to their progeny when crossed with males of Rockefeller strain of Ae. aegypti, which does not carry Wolbachia. In contrast, none of the progeny of Las Cruces males mated to Rockefeller females were infected with Wolbachia.

8.
J Med Entomol ; 54(4): 878-887, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28399278

RESUMO

Aedes aegypti (L.) is the vector responsible for transmitting dengue, chikungunya, yellow fever, and Zika viruses, as well as other pathogens. Microbial larvicides based on Bacillus thuringiensis Berliner israelensis (Bti) and Saccharopolyspora spinosa Mertz and Yao, such as VectoBac 12AS and Natular 2EC, have been shown to be effective in reducing larval populations of Ae. aegypti. We examined the gene expression of two detoxification enzymes, glucosyl and glucuronosyl transferases (AaeGGT1 and AaeGGT2), through developmental stages and a time course study in response to larvicide exposure using qualitative real-time polymerase chain reaction (qPCR). AaeGGT1 and AaeGGT2 gene expressions were differentially regulated during development of the immature stages. We also found that male adults had higher expression than female adults after controlling for age effects. AaeGGT1 and AaeGGT2 gene expression were both upregulated in response to VectoBac 12AS and Natular 2EC treatments with the maximum level of expression occurring 24 h after treatment applications. This information sheds light on larvicide-induced changes in the physiology of Ae. aegypti with implications for development of mosquito control strategies.


Assuntos
Aedes/genética , Regulação da Expressão Gênica , Glucosiltransferases/genética , Glucuronosiltransferase/genética , Proteínas de Insetos/genética , Inseticidas/farmacologia , Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Animais , Bacillus thuringiensis/química , Feminino , Glucosiltransferases/metabolismo , Glucuronosiltransferase/metabolismo , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Óvulo/efeitos dos fármacos , Óvulo/crescimento & desenvolvimento , Pupa/efeitos dos fármacos , Pupa/genética , Pupa/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Saccharopolyspora/química
9.
Ecol Evol ; 7(10): 3507-3519, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28515886

RESUMO

Ciliate protists and rotifers are ubiquitous in aquatic habitats and can comprise a significant portion of the microbial food resources available to larval mosquitoes, often showing substantial declines in abundance in the presence of mosquito larvae. This top-down regulation of protists is reported to be strong for mosquitoes inhabiting small aquatic containers such as pitcher plants or tree holes, but the nature of these interactions with larval mosquitoes developing in other aquatic habitats is poorly understood. We examined the effects of these two microbial groups on lower trophic level microbial food resources, such as bacteria, small flagellates, and organic particles, in the water column, and on Culex larval development and adult production. In three independent laboratory experiments using two microeukaryote species (one ciliate protist and one rotifer) acquired from field larval mosquito habitats and cultured in the laboratory, we determined the effects of Culex nigripalpus larval grazing on water column microbial dynamics, while simultaneously monitoring larval growth and development. The results revealed previously unknown interactions that were different from the top-down regulation of microbial groups by mosquito larvae in other systems. Both ciliates and rotifers, singly or in combination, altered other microbial populations and inhibited mosquito growth. It is likely that these microeukaryotes, instead of serving as food resources, competed with early instar mosquito larvae for microbes such as small flagellates and bacteria in a density-dependent manner. These findings help our understanding of the basic larval biology of Culex mosquitoes, variation in mosquito production among various larval habitats, and may have implications for existing vector control strategies and for developing novel microbial-based control methods.

10.
mSphere ; 2(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28168223

RESUMO

Pollution from nutrients in aquatic habitats has been linked to increases in disease vectors, including mosquitoes and other pestiferous insects. One possibility is that changes in mosquito microbiomes are impacted by nutrient enrichments and that these changes affect various traits, including larval development, susceptibility to larval control agents, and susceptibility of the adult mosquitoes to pathogens. We tested this hypothesis using field mesocosms supplemented with low- and high-organic-nutrient regimens and then sampled microbial communities associated with the naturally colonizing Culex nigripalpus mosquito vector. By high-throughput sequencing of 16S rRNA gene sequences, we found no significant differences in overall microbial communities associated with sampled mosquitoes, despite detecting discernible differences in environmental variables, including pH, dissolved oxygen, and nutrient amendments. Nevertheless, indicator species analysis revealed that members of the Clostridiales were significantly associated with mosquitoes that originated from high-nutrient enrichments. In contrast, members of the Burkholderiales were associated with mosquitoes from the low-nutrient enrichment. High bacterial variability associated with the life stages of the C. nigripalpus was largely unaffected by levels of nutrient enrichments that impacted larval microbial resources, including bacteria, ciliates, and flagellates in the larval environments. IMPORTANCE Mosquito microbiota provide important physiological and ecological attributes to mosquitoes, including an impact on their susceptibility to pathogens, fitness, and sensitivity to mosquito control agents. Culex nigripalpus mosquito populations transmit various pathogens, including the Saint Louis and West Nile viruses, and proliferate in nutrient-rich environments, such as in wastewater treatment wetlands. Our study examined whether increases in nutrients within larval mosquito developmental habitats impact microbial communities associated with C. nigripalpus mosquitoes. We characterized the effects of organic enrichments on microbiomes associated with C. nigripalpus mosquitoes and identified potential bacterial microbiota that will be further investigated for whether they alter mosquito life history traits and for their potential role in the development of microbial-based control strategies.

11.
J Vector Ecol ; 42(1): 51-59, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28504446

RESUMO

The effects of microbial biopesticides used for mosquito control on autotrophic microorganisms such as nanophytoplankton are equivocal. We examined impacts of mosquito biopesticides and mosquito larvae on primary producers in two independent experiments. In the first experiment, we examined the effects of a commonly used microbial biopesticide formulation (VectoMax® CG) on a unicellular microalga, Selenastrum capricornatum Printz, under axenic laboratory conditions. The biopesticide treatments included two concentrations (0.008 and 0.016 g liter-1 ) of VectoMax® CG and two controls (one untreated and another with autoclaved 0.016 g VectoMax® CG liter-1 ) in replicated axenic experimental microcosms. Spectrophotometric analysis of chlorophyll a (proxy for algal biomass) and direct enumeration of algal cells following the treatments revealed no significant effects of the microbial biopesticide on algal population growth during the four-week study. In the second experiment, we tested the effects of different densities of Culex larvae on the population of S. capricornatum. Effects of mosquito larvae feeding on S. capricornatum were significant with a curvilinear relationship between larval density and algal abundance in the water column. Together, these studies demonstrated a lack of direct cytological/toxicological effects of Bacillus-based microbial pesticides on freshwater primary production and support the hypothesis that the reduction in algal primary production previously reported when Bti products were applied to aquatic environments was likely independent of the Bacillus-based larvicidal toxins. Instead, it was likely mediated by microbial interactions in the water column and the trophic cascade effects that resulted from the removal of larval mosquitoes. These studies suggest that mosquito larvae independent of pesticide application can influence primary production. Our method of evaluating biopesticides against small photoautotrophs can be very useful for studying the unintended effects on autotrophic microorganisms of other pesticides, including herbicides and pesticides applied to aquatic environments.


Assuntos
Agentes de Controle Biológico , Culex , Cadeia Alimentar , Controle de Mosquitos/métodos , Fitoplâncton , Animais , Bacillus , Clorofila/análise , Clorofila A , Água Doce , Larva
12.
J Vector Ecol ; 39(1): 1-13, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24820550

RESUMO

Schoenoplectus maritimus (alkali bulrush) has desirable attributes, such as a short growth habit (height of mature stands < 1.5 m) and annual senescence, for a potential alternative to tall (height > 3 m) emergent macrophytes in shallow constructed treatment wetlands treating ammonium-dominated wastewater. The effects of different ammonium nitrogen (NH4-N) levels on alkali bulrush growth and its ability to take up nutrients from the wastewater, as well as on mosquito production, across the range of NH4-N found in constructed wetlands of southern California are unknown. We evaluated the effects of enrichment with NH4-N on mosquito production and on the nutrient uptake and growth of alkali bulrush in two studies. Overall, significantly greater numbers (> 50%) of immature mosquitoes (mainly Culex tarsalis) were found in mesocosms enriched with NH4-N than in mesocosms receiving ambient (<0.3 mg/liter) NH4-N. High NH4-N enrichment (up to 60 mg/liter) did not adversely impact the height and stem density of S. maritimus, although a significant decrease in biomass was observed at the highest enrichment level. Nitrogen uptake by alkali bulrush increased directly with NH4-N enrichment, whereas carbon was conserved in the above-ground biomass across the enrichment gradient. Alkali bulrush is recommended for use as part of integrated mosquito management programs for moderately enriched, multipurpose, constructed treatment wetlands that improve water quality as well as provide wetland habitat for waterfowl.


Assuntos
Culicidae/fisiologia , Cyperaceae/metabolismo , Áreas Alagadas , Animais , Ecossistema
13.
PLoS One ; 8(8): e72522, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967314

RESUMO

Microbes are important for mosquito nutrition, growth, reproduction and control. In this study, we examined bacterial communities associated with larval mosquitoes and their habitats. Specifically, we characterized bacterial communities associated with late larval instars of the western encephalitis mosquito (Culextarsalis), the submerged portions of two emergent macrophytes (California bulrush, Schoenoplectuscalifornicus and alkali bulrush, Schoenoplectusmaritimus), and the associated water columns to investigate potential differential use of resources by mosquitoes in different wetland habitats. Using next-generation sequence data from 16S rRNA gene hypervariable regions, the alpha diversity of mosquito gut microbial communities did not differ between pond mesocosms containing distinct monotypic plants. Proteobacteria, dominated by the genus Thorsellia (Enterobacteriaceae), was the most abundant phylum recovered from C. tarsalis larvae. Approximately 49% of bacterial OTUs found in larval mosquitoes were identical to OTUs recovered from the water column and submerged portions of the two bulrushes. Plant and water samples were similar to one another, both being dominated by Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria and Verrucomicrobia phyla. Overall, the bacterial communities within C. tarsalis larvae were conserved and did not change across sampling dates and between two distinct plant habitats. Although Thorsellia spp. dominated mosquito gut communities, overlap of mosquito gut, plant and water-column OTUs likely reveal the effects of larval feeding. Future research will investigate the role of the key indicator groups of bacteria across the different developmental stages of this mosquito species.


Assuntos
Bactérias/classificação , Biodiversidade , Culex/microbiologia , Plantas/microbiologia , Animais , Bactérias/genética , Ecossistema , Invertebrados , Larva , Comportamento Predatório , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA