Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nucleic Acids Res ; 47(6): 2822-2839, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30698748

RESUMO

The DNA methylation epigenetic signature is a key determinant during development. Rules governing its establishment and maintenance remain elusive especially at repetitive sequences, which account for the majority of methylated CGs. DNA methylation is altered in a number of diseases including those linked to mutations in factors that modify chromatin. Among them, SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain Containing 1) has been of major interest following identification of germline mutations in Facio-Scapulo-Humeral Dystrophy (FSHD) and in an unrelated developmental disorder, Bosma Arhinia Microphthalmia Syndrome (BAMS). By investigating why germline SMCHD1 mutations lead to these two different diseases, we uncovered a role for this factor in de novo methylation at the pluripotent stage. SMCHD1 is required for the dynamic methylation of the D4Z4 macrosatellite upon reprogramming but seems dispensable for methylation maintenance. We find that FSHD and BAMS patient's cells carrying SMCHD1 mutations are both permissive for DUX4 expression, a transcription factor whose regulation has been proposed as the main trigger for FSHD. These findings open new questions as to what is the true aetiology for FSHD, the epigenetic events associated with the disease thus calling the current model into question and opening new perspectives for understanding repetitive DNA sequences regulation.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Metilação de DNA , Proteínas de Homeodomínio/genética , Repetições de Microssatélites/genética , Células Cultivadas , Reprogramação Celular/genética , Atresia das Cóanas/genética , Atresia das Cóanas/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Regulação da Expressão Gênica , Células HCT116 , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Microftalmia/genética , Microftalmia/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Nariz/anormalidades
2.
Muscle Nerve ; 61(6): 801-807, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32086834

RESUMO

BACKGROUND: Transgenic animals are widely used for research and for most of them, genotyping is unavoidable. Published protocols may be powerful but may also present disadvantages such as their cost or the requirement of additional steps/equipment. Moreover, if more than one strain must be genotyped, several protocols may need to be developed. METHODS: we adapted the existing amplification-resistant mutation protocol to develop the 1-h universal genotyping protocol (1-HUG), which allows the robust genotyping of genetically modified mice in 1 h from sample isolation to polymerase chain reaction gel running. RESULTS: This protocol allows the genotyping of different mouse models including mdx mouse, and FLExDUX4 and HSA-MerCreMer alone or in combination. It can be applied to different types of genomic modifications and to sexing. CONCLUSIONS: The 1-HUG protocol can be used routinely in any laboratory using mouse models for neuromuscular diseases.


Assuntos
Genótipo , Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase/métodos , Animais , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Especificidade da Espécie
3.
PLoS Genet ; 12(9): e1006289, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27589388

RESUMO

Syncytins are envelope genes from endogenous retroviruses, "captured" for a role in placentation. They mediate cell-cell fusion, resulting in the formation of a syncytium (the syncytiotrophoblast) at the fetomaternal interface. These genes have been found in all placental mammals in which they have been searched for. Cell-cell fusion is also pivotal for muscle fiber formation and repair, where the myotubes are formed from the fusion of mononucleated myoblasts into large multinucleated structures. Here we show, taking advantage of mice knocked out for syncytins, that these captured genes contribute to myoblast fusion, with a >20% reduction in muscle mass, mean muscle fiber area and number of nuclei per fiber in knocked out mice for one of the two murine syncytin genes. Remarkably, this reduction is only observed in males, which subsequently show muscle quantitative traits more similar to those of females. In addition, we show that syncytins also contribute to muscle repair after cardiotoxin-induced injury, with again a male-specific effect on the rate and extent of regeneration. Finally, ex vivo experiments carried out on murine myoblasts demonstrate the direct involvement of syncytins in fusion, with a >40% reduction in fusion index upon addition of siRNA against both syncytins. Importantly, similar effects are observed with primary myoblasts from sheep, dog and human, with a 20-40% reduction upon addition of siRNA against the corresponding syncytins. Altogether, these results show a direct contribution of the fusogenic syncytins to myogenesis, with a demonstrated male-dependence of the effect in mice, suggesting that these captured genes could be responsible for the muscle sexual dimorphism observed in placental mammals.


Assuntos
Produtos do Gene env/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteínas da Gravidez/genética , Animais , Diferenciação Celular/genética , Cães , Retrovirus Endógenos/genética , Feminino , Técnicas de Inativação de Genes , Produtos do Gene env/metabolismo , Humanos , Masculino , Mamíferos , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Proteínas da Gravidez/metabolismo , RNA Interferente Pequeno/genética , Regeneração/genética , Caracteres Sexuais
4.
Hum Mol Genet ; 25(8): 1468-78, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26787513

RESUMO

Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy.


Assuntos
Proteínas de Homeodomínio/genética , Morfolinos/síntese química , Distrofia Muscular Facioescapuloumeral/terapia , Oligonucleotídeos Antissenso/síntese química , Precursores de RNA/antagonistas & inibidores , Regiões 3' não Traduzidas/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Proteínas de Homeodomínio/antagonistas & inibidores , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Morfolinos/farmacologia , Morfolinos/uso terapêutico , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Poliadenilação/efeitos dos fármacos , Precursores de RNA/química , Transdução de Sinais
5.
Int J Mol Sci ; 19(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751519

RESUMO

Facioscapulohumeral dystrophy (FSHD) is characterized by the contraction of the D4Z4 array located in the sub-telomeric region of the chromosome 4, leading to the aberrant expression of the DUX4 transcription factor and the mis-regulation of hundreds of genes. Several therapeutic strategies have been proposed among which the possibility to target the polyadenylation signal to silence the causative gene of the disease. Indeed, defects in mRNA polyadenylation leads to an alteration of the transcription termination, a disruption of mRNA transport from the nucleus to the cytoplasm decreasing the mRNA stability and translation efficiency. This review discusses the polyadenylation mechanisms, why alternative polyadenylation impacts gene expression, and how targeting polyadenylation signal may be a potential therapeutic approach for FSHD.


Assuntos
RNA Mensageiro/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Inativação Gênica/fisiologia , Poliadenilação/genética , Poliadenilação/fisiologia
6.
Hum Mol Genet ; 23(15): 4125-33, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24659496

RESUMO

While transfer of a protein encoded by a single nucleus to nearby nuclei in multinucleated cells has been known for almost 25 years, the biological consequences for gain-of-function diseases have not been considered. Here, we have investigated nuclear protein spreading and its potential consequences in two of the three most prevalent neuromuscular diseases. By performing co-cultures between diseased or control human myoblasts and murine C2C12 myoblasts, we demonstrate that in facioscapulohumeral dystrophy, although the transcription of the toxic protein DUX4 occurs in only a limited number of nuclei, the resulting protein diffuses into nearby nuclei within the myotubes, thus spreading aberrant gene expression. In myotonic dystrophy type 1, we observed that in human-mouse heterokaryons, the expression of a mutated DMPK from human nuclei titrates splicing factors produced by neighboring nuclei, inducing the mis-splicing of several pre-mRNAs in murine nuclei. In both cases, the spreading of the pathological phenotypes from one nucleus to another is observed, highlighting an additional mechanism that contributes to the dissemination and worsening of the muscle pathogenesis. These results indicate that nuclear protein spreading may be an important component of pathophysiology of gain of function muscular diseases which should be taken into consideration in the design of new therapeutic approaches.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Mioblastos/metabolismo , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Transporte Ativo do Núcleo Celular , Animais , Técnicas de Cocultura , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Mioblastos/patologia , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Miotonina Proteína Quinase/metabolismo , Transporte Proteico , Splicing de RNA , Transcrição Gênica
7.
Hum Mol Genet ; 23(1): 171-81, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23966205

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent adult muscular dystrophies. The common clinical signs usually appear during the second decade of life but when the first molecular dysregulations occur is still unknown. Our aim was to determine whether molecular dysregulations can be identified during FSHD fetal muscle development. We compared muscle biopsies derived from FSHD1 fetuses and the cells derived from some of these biopsies with biopsies and cells derived from control fetuses. We mainly focus on DUX4 isoform expression because the expression of DUX4 has been confirmed in both FSHD cells and biopsies by several laboratories. We measured DUX4 isoform expression by using qRT-PCR in fetal FSHD1 myotubes treated or not with an shRNA directed against DUX4 mRNA. We also analyzed DUX4 downstream target gene expression in myotubes and fetal or adult FSHD1 and control quadriceps biopsies. We show that both DUX4-FL isoforms are already expressed in FSHD1 myotubes. Interestingly, DUX4-FL expression level is much lower in trapezius than in quadriceps myotubes, which is confirmed by the level of expression of DUX4 downstream genes. We observed that TRIM43 and MBD3L2 are already overexpressed in FSHD1 fetal quadriceps biopsies, at similar levels to those observed in adult FSHD1 quadriceps biopsies. These results indicate that molecular markers of the disease are already expressed during fetal life, thus opening a new field of investigation for mechanisms leading to FSHD.


Assuntos
Proteínas de Homeodomínio/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapuloumeral/embriologia , Distrofia Muscular Facioescapuloumeral/genética , Adulto , Células Cultivadas , Feminino , Feto , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular Facioescapuloumeral/patologia , Isoformas de Proteínas/genética , Músculo Quadríceps/embriologia , Músculo Quadríceps/metabolismo , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Músculos Superficiais do Dorso/embriologia , Músculos Superficiais do Dorso/metabolismo
8.
BMC Med Genet ; 17(1): 66, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634379

RESUMO

BACKGROUND: The main form of Facio-Scapulo-Humeral muscular Dystrophy is linked to copy number reduction of the 4q D4Z4 macrosatellite (FSHD1). In 5 % of cases, FSHD phenotype appears in the absence of D4Z4 reduction (FSHD2). In 70-80 % of these patients, variants of the SMCHD1 gene segregate with 4qA haplotypes and D4Z4 hypomethylation. CASE PRESENTATION: We report a family presenting with neuromuscular symptoms reminiscent of FSHD but without D4Z4 copy reduction. We characterized the 4q35 region using molecular combing, searched for mutation in the SMCHD1 gene and determined D4Z4 methylation level by sodium bisulfite sequencing. We further investigated the impact of the SMCHD1 mutation at the protein level and on the NMD-dependent degradation of transcript. In muscle, we observe moderate but significant reduction in D4Z4 methylation, not correlated with DUX4-fl expression. Exome sequencing revealed a heterozygous insertion of 7 bp in exon 37 of the SMCHD1 gene producing a loss of frame with premature stop codon 4 amino acids after the insertion (c.4614-4615insTATAATA). Both wild-type and mutated transcripts are detected. CONCLUSION: The truncated protein is absent and the full-length protein level is similar in patients and controls indicating that in this family, FSHD is not associated with SMCHD1 haploinsufficiency.


Assuntos
Proteínas Cromossômicas não Histona/genética , Metilação de DNA , Repetições de Microssatélites , Distrofia Muscular Facioescapuloumeral/genética , Mutação , Segregação de Cromossomos , Cromossomos Humanos Par 4/genética , Humanos , Linhagem
9.
Ann Neurol ; 78(3): 387-400, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26018399

RESUMO

OBJECTIVE: Facioscapulohumeral muscular dystrophy (FSHD) is linked to either contraction of D4Z4 repeats on chromosome 4 or to mutations in the SMCHD1 gene, both of which result in the aberrant expression of the transcription factor DUX4. However, it is still difficult to correlate these genotypes with the phenotypes observed in patients. Because we have recently shown that mice with disrupted Fat1 functions exhibit FSHD-like phenotypes, we have investigated the expression of the human FAT1 gene in FSHD. METHODS: We first analyzed FAT1 expression in FSHD adult muscles and determined whether FAT1 expression was driven by DUX4. We next determined FAT1 expression levels in 64 muscles isolated from 16 control fetuses. These data were further complemented with analysis of Fat1 expression in developing mouse embryos. RESULTS: We demonstrated that FAT1 expression is independent of DUX4. Moreover, we observed that (1) in control fetal human biopsies or in developing mouse embryos, FAT1 is expressed at lower levels in muscles that are affected at early stages of FSHD progression than in muscles that are affected later or are nonaffected; and (2) in adult muscle biopsies, FAT1 expression is lower in FSHD muscles compared to control muscles. INTERPRETATION: We propose a revised model for FSHD in which FAT1 levels might play a role in determining which muscles will exhibit early and late disease onset, whereas DUX4 may worsen the muscle phenotype.


Assuntos
Caderinas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/metabolismo , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Adulto , Animais , Células Cultivadas , Feminino , Feto , Humanos , Masculino , Camundongos , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Quadríceps/embriologia
10.
PLoS Genet ; 9(6): e1003550, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23785297

RESUMO

Generation of skeletal muscles with forms adapted to their function is essential for normal movement. Muscle shape is patterned by the coordinated polarity of collectively migrating myoblasts. Constitutive inactivation of the protocadherin gene Fat1 uncoupled individual myoblast polarity within chains, altering the shape of selective groups of muscles in the shoulder and face. These shape abnormalities were followed by early onset regionalised muscle defects in adult Fat1-deficient mice. Tissue-specific ablation of Fat1 driven by Pax3-cre reproduced muscle shape defects in limb but not face muscles, indicating a cell-autonomous contribution of Fat1 in migrating muscle precursors. Strikingly, the topography of muscle abnormalities caused by Fat1 loss-of-function resembles that of human patients with facioscapulohumeral dystrophy (FSHD). FAT1 lies near the critical locus involved in causing FSHD, and Fat1 mutant mice also show retinal vasculopathy, mimicking another symptom of FSHD, and showed abnormal inner ear patterning, predictive of deafness, reminiscent of another burden of FSHD. Muscle-specific reduction of FAT1 expression and promoter silencing was observed in foetal FSHD1 cases. CGH array-based studies identified deletion polymorphisms within a putative regulatory enhancer of FAT1, predictive of tissue-specific depletion of FAT1 expression, which preferentially segregate with FSHD. Our study identifies FAT1 as a critical determinant of muscle form, misregulation of which associates with FSHD.


Assuntos
Caderinas/genética , Desenvolvimento Muscular/genética , Músculos/fisiopatologia , Distrofia Muscular Facioescapuloumeral/genética , Adulto , Animais , Caderinas/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Humanos , Camundongos , Músculos/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos
11.
Hum Mol Genet ; 22(20): 4206-14, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23777630

RESUMO

Facio-scapulo-humeral dystrophy (FSHD) results from deletions in the subtelomeric macrosatellite D4Z4 array on the 4q35 region. Upregulation of the DUX4 retrogene from the last D4Z4 repeated unit is thought to underlie FSHD pathophysiology. However, no one knows what triggers muscle defect and when alteration arises. To gain further insights into the molecular mechanisms of the disease, we evaluated at the molecular level, the perturbation linked to the FSHD genotype with no a priori on disease onset, severity or penetrance and prior to any infiltration by fibrotic or adipose tissue in biopsies from fetuses carrying a short pathogenic D4Z4 array (n = 6) compared with fetuses with a non-pathogenic D4Z4 array (n = 21). By measuring expression of several muscle-specific markers and 4q35 genes including the DUX4 retrogene by an RT-PCR and western blotting, we observed a global dysregulation of genes involved in myogenesis including MYOD1 in samples with <11 D4Z4. The DUX4-fl pathogenic transcript was detected in FSHD biopsies but also in controls. Importantly, in FSHD fetuses, we mainly detected the non-spliced DUX4-fl isoform. In addition, several other genes clustered at the 4q35 locus are upregulated in FSHD fetuses. Our study is the first to examine fetuses carrying an FSHD-linked genotype and reveals an extensive dysregulation of several muscle-specific and 4q35 genes at early development stage at a distance from any muscle defect. Overall, our work suggests that even if FSHD is an adult-onset muscular dystrophy, the disease might also involve early molecular defects arising during myogenesis or early differentiation.


Assuntos
Cromossomos Humanos Par 4/genética , Feto/metabolismo , Proteínas de Homeodomínio/genética , Desenvolvimento Muscular/genética , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/fisiopatologia , Estudos de Casos e Controles , Diferenciação Celular/genética , Feto/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Distrofia Muscular Facioescapuloumeral/embriologia , Proteína MyoD/genética , Especificidade de Órgãos , Penetrância , Sequências Repetitivas de Ácido Nucleico
12.
Am J Pathol ; 181(4): 1387-401, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22871573

RESUMO

In most cases facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of the D4Z4 repeat in the 4q subtelomere. This contraction is associated with local chromatin decondensation and derepression of the DUX4 retrogene. Its complex genetic and epigenetic cause and high clinical variability in disease severity complicate investigations on the pathogenic mechanism underlying FSHD. A validated cellular model bypassing the considerable heterogeneity would facilitate mechanistic and therapeutic studies of FSHD. Taking advantage of the high incidence of somatic mosaicism for D4Z4 repeat contraction in de novo FSHD, we have established a clonal myogenic cell model from a mosaic patient. Individual clones are genetically identical except for the size of the D4Z4 repeat array, being either normal or FSHD sized. These clones retain their myogenic characteristics, and D4Z4 contracted clones differ from the noncontracted clones by the bursts of expression of DUX4 in sporadic nuclei, showing that this burst-like phenomenon is a locus-intrinsic feature. Consequently, downstream effects of DUX4 expression can be observed in D4Z4 contracted clones, like differential expression of DUX4 target genes. We also show their participation to in vivo regeneration with immunodeficient mice, further expanding the potential of these clones for mechanistic and therapeutic studies. These cell lines will facilitate pairwise comparisons to identify FSHD-specific differences and are expected to create new opportunities for high-throughput drug screens.


Assuntos
Modelos Biológicos , Mosaicismo , Células Musculares/patologia , Contração Muscular/genética , Distrofia Muscular Facioescapuloumeral/patologia , Distrofia Muscular Facioescapuloumeral/fisiopatologia , Sequências Repetitivas de Ácido Nucleico/genética , Adulto , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Linhagem Celular Transformada , Proliferação de Células , Células Clonais , Eletroforese em Gel de Campo Pulsado , Regulação da Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Mioblastos/metabolismo , Regeneração/genética , Telômero/genética
13.
Proc Natl Acad Sci U S A ; 106(18): 7479-84, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19383783

RESUMO

Myostatin, a member of the TGF-beta family, has been identified as a powerful inhibitor of muscle growth. Absence or blockade of myostatin induces massive skeletal muscle hypertrophy that is widely attributed to proliferation of the population of muscle fiber-associated satellite cells that have been identified as the principle source of new muscle tissue during growth and regeneration. Postnatal blockade of myostatin has been proposed as a basis for therapeutic strategies to combat muscle loss in genetic and acquired myopathies. But this approach, according to the accepted mechanism, would raise the threat of premature exhaustion of the pool of satellite cells and eventual failure of muscle regeneration. Here, we show that hypertrophy in the absence of myostatin involves little or no input from satellite cells. Hypertrophic fibers contain no more myonuclei or satellite cells and myostatin had no significant effect on satellite cell proliferation in vitro, while expression of myostatin receptors dropped to the limits of detectability in postnatal satellite cells. Moreover, hypertrophy of dystrophic muscle arising from myostatin blockade was achieved without any apparent enhancement of contribution of myonuclei from satellite cells. These findings contradict the accepted model of myostatin-based control of size of postnatal muscle and reorient fundamental investigations away from the mechanisms that control satellite cell proliferation and toward those that increase myonuclear domain, by modulating synthesis and turnover of structural muscle fiber proteins. It predicts too that any benefits of myostatin blockade in chronic myopathies are unlikely to impose any extra stress on the satellite cells.


Assuntos
Hipertrofia , Músculo Esquelético/patologia , Miostatina/metabolismo , Células Satélites de Músculo Esquelético/patologia , Receptores de Activinas Tipo II/metabolismo , Animais , Proliferação de Células , Regulação para Baixo , Camundongos , Camundongos Mutantes , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Miostatina/antagonistas & inibidores , Miostatina/genética , Regeneração/genética , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia
14.
Front Genome Ed ; 4: 937879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910413

RESUMO

Facioscapulohumeral dystrophy (FSHD) is a skeletal muscle disease caused by the aberrant expression of the DUX4 gene in the muscle tissue. To date, different therapeutic approaches have been proposed, targeting DUX4 at the DNA, RNA or protein levels. The recent development of the clustered regularly interspaced short-palindromic repeat (CRISPR) based technology opened new avenues of research, and FSHD is no exception. For the first time, a cure for genetic muscular diseases can be considered. Here, we describe CRISPR-based strategies that are currently being investigated for FSHD. The different approaches include the epigenome editing targeting the DUX4 gene and its promoter, gene editing targeting the polyadenylation of DUX4 using TALEN, CRISPR/cas9 or adenine base editing and the CRISPR-Cas9 genome editing for SMCHD1. We also discuss challenges facing the development of these gene editing based therapeutics.

15.
Sci Rep ; 12(1): 3756, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260651

RESUMO

Among the mutations arising in the DMD gene and causing Duchenne Muscular Dystrophy (DMD), 10-15% are multi-exon duplications. There are no current therapeutic approaches with the ability to excise large multi-exon duplications, leaving this patient cohort without mutation-specific treatment. Using CRISPR/Cas9 could provide a valid alternative to achieve targeted excision of genomic duplications of any size. Here we show that the expression of a single CRISPR/Cas9 nuclease targeting a genomic region within a DMD duplication can restore the production of wild-type dystrophin in vitro. We assessed the extent of dystrophin repair following both constitutive and transient nuclease expression by either transducing DMD patient-derived myoblasts with integrating lentiviral vectors or electroporating them with CRISPR/Cas9 expressing plasmids. Comparing genomic, transcript and protein data, we observed that both continuous and transient nuclease expression resulted in approximately 50% dystrophin protein restoration in treated myoblasts. Our data demonstrate that a high transient expression profile of Cas9 circumvents its requirement of continuous expression within the cell for targeting DMD duplications. This proof-of-concept study therefore helps progress towards a clinically relevant gene editing strategy for in vivo dystrophin restoration, by highlighting important considerations for optimizing future therapeutic approaches.


Assuntos
Sistemas CRISPR-Cas , Distrofia Muscular de Duchenne , Sistemas CRISPR-Cas/genética , Distrofina/genética , Distrofina/metabolismo , Endonucleases/genética , Edição de Genes/métodos , Terapia Genética/métodos , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Mioblastos/metabolismo
16.
Cells ; 11(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269468

RESUMO

Extracellular vesicles can mediate communication between tissues, affecting the physiological conditions of recipient cells. They are increasingly investigated in Amyotrophic Lateral Sclerosis, the most common form of Motor Neurone Disease, as transporters of misfolded proteins including SOD1, FUS, TDP43, or other neurotoxic elements, such as the dipeptide repeats resulting from C9orf72 expansions. EVs are classified based on their biogenesis and size and can be separated by differential centrifugation. They include exosomes, released by the fusion of multivesicular bodies with the plasma membrane, and ectosomes, also known as microvesicles or microparticles, resulting from budding or pinching of the plasma membrane. In the current study, EVs were obtained from the myotube cell culture medium of ALS patients or healthy controls. EVs of two different sizes, separating at 20,000 or 100,000 g, were then compared in terms of their effects on recipient motor neurons, astrocytes, and myotubes. Compared to untreated cells, the smaller, exosome-like vesicles of ALS patients reduced the survival of motor neurons by 31% and of myotubes by 18%, decreased neurite length and branching, and increased the proportion of stellate astrocytes, whereas neither those of healthy subjects, nor larger EVs of ALS or healthy subjects, had such effects.


Assuntos
Esclerose Lateral Amiotrófica , Exossomos , Vesículas Extracelulares , Síndromes Neurotóxicas , Esclerose Lateral Amiotrófica/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neurônios Motores/metabolismo , Fibras Musculares Esqueléticas/metabolismo
17.
J Cachexia Sarcopenia Muscle ; 13(2): 1385-1402, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35194965

RESUMO

BACKGROUND: The cause of the motor neuron (MN) death that drives terminal pathology in amyotrophic lateral sclerosis (ALS) remains unknown, and it is thought that the cellular environment of the MN may play a key role in MN survival. Several lines of evidence implicate vesicles in ALS, including that extracellular vesicles may carry toxic elements from astrocytes towards MNs, and that pathological proteins have been identified in circulating extracellular vesicles of sporadic ALS patients. Because MN degeneration at the neuromuscular junction is a feature of ALS, and muscle is a vesicle-secretory tissue, we hypothesized that muscle vesicles may be involved in ALS pathology. METHODS: Sporadic ALS patients were confirmed to be ALS according to El Escorial criteria and were genotyped to test for classic gene mutations associated with ALS, and physical function was assessed using the ALSFRS-R score. Muscle biopsies of either mildly affected deltoids of ALS patients (n = 27) or deltoids of aged-matched healthy subjects (n = 30) were used for extraction of muscle stem cells, to perform immunohistology, or for electron microscopy. Muscle stem cells were characterized by immunostaining, RT-qPCR, and transcriptomic analysis. Secreted muscle vesicles were characterized by proteomic analysis, Western blot, NanoSight, and electron microscopy. The effects of muscle vesicles isolated from the culture medium of ALS and healthy myotubes were tested on healthy human-derived iPSC MNs and on healthy human myotubes, with untreated cells used as controls. RESULTS: An accumulation of multivesicular bodies was observed in muscle biopsies of sporadic ALS patients by immunostaining and electron microscopy. Study of muscle biopsies and biopsy-derived denervation-naïve differentiated muscle stem cells (myotubes) revealed a consistent disease signature in ALS myotubes, including intracellular accumulation of exosome-like vesicles and disruption of RNA-processing. Compared with vesicles from healthy control myotubes, when administered to healthy MNs the vesicles of ALS myotubes induced shortened, less branched neurites, cell death, and disrupted localization of RNA and RNA-processing proteins. The RNA-processing protein FUS and a majority of its binding partners were present in ALS muscle vesicles, and toxicity was dependent on the expression level of FUS in recipient cells. Toxicity to recipient MNs was abolished by anti-CD63 immuno-blocking of vesicle uptake. CONCLUSIONS: ALS muscle vesicles are shown to be toxic to MNs, which establishes the skeletal muscle as a potential source of vesicle-mediated toxicity in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Idoso , Esclerose Lateral Amiotrófica/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/metabolismo , Células Musculares/metabolismo , Proteômica
18.
Mol Ther ; 18(5): 881-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20104211

RESUMO

Duchenne muscular dystrophy is characterized by muscular atrophy, fibrosis, and fat accumulation. Several groups have demonstrated that in the mdx mouse, the exon-skipping strategy can restore a quasi-dystrophin in almost 100% of the muscle fibers. On the other hand, inhibition of the myostatin pathway in adult mice has been described to enhance muscle growth and improve muscle force. Our aim was to combine these two strategies to evaluate a possible additive effect. We have chosen to inhibit the myostatin pathway using the technique of RNA interference directed against the myostatin receptor AcvRIIb mRNA (sh-AcvRIIb). The restoration of a quasi-dystrophin was mediated by the vectorized U7 exon-skipping technique (U7-DYS). Adeno-associated vectors carrying either the sh-AcvrIIb construct alone, the U7-DYS construct alone, or a combination of both constructs were injected in the tibialis anterior (TA) muscle of dystrophic mdx mice. We show that even if each separate approach has some effects on muscle physiology, the combination of the dystrophin rescue and the downregulation of the myostatin receptor is required to massively improve both the tetanic force and the specific force. This study provides a novel pharmacogenetic strategy for treatment of certain neuromuscular diseases associated with muscle wasting.


Assuntos
Distrofina/metabolismo , Distrofia Muscular de Duchenne/terapia , Miostatina/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animais , Linhagem Celular , Dependovirus/genética , Distrofina/genética , Feminino , Vetores Genéticos , Humanos , Camundongos , Camundongos Endogâmicos mdx , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
19.
Cells ; 10(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34831153

RESUMO

Intercellular communication between neurons and their surrounding cells occurs through the secretion of soluble molecules or release of vesicles such as exosomes into the extracellular space, participating in brain homeostasis. Under neuro-degenerative conditions associated with ageing, such as amyotrophic lateral sclerosis (ALS), Alzheimer's or Parkinson's disease, exosomes are suspected to propagate toxic proteins. The topic of this review is the role of exosomes in ageing conditions and more specifically in ALS. Our current understanding of exosomes and exosome-related mechanisms is first summarized in a general sense, including their biogenesis and secretion, heterogeneity, cellular interaction and intracellular fate. Their role in the Central Nervous System (CNS) and ageing of the neuromotor system is then considered in the context of exosome-induced signaling. The review then focuses on exosomes in age-associated neurodegenerative disease. The role of exosomes in ALS is highlighted, and their use as potential biomarkers to diagnose and prognose ALS is presented. The therapeutic implications of exosomes for ALS are considered, whether as delivery vehicles, neurotoxic targets or as corrective drugs in and of themselves. A diverse set of mechanisms underpin the functional roles, both confirmed and potential, of exosomes, generally in ageing and specifically in motor neurone disease. Aspects of their contents, biogenesis, uptake and modifications offer many plausible routes towards the development of novel biomarkers and therapeutics.


Assuntos
Envelhecimento/metabolismo , Biomarcadores/metabolismo , Exossomos/metabolismo , Doença dos Neurônios Motores/metabolismo , Animais , Humanos , Degeneração Neural/terapia , Transdução de Sinais
20.
J Cachexia Sarcopenia Muscle ; 12(6): 2079-2090, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687171

RESUMO

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is caused by mutations leading to the aberrant expression of the DUX4 transcription factor in muscles. DUX4 was proposed to induce cell death, but the involvement of different death pathways is still discussed. A possible pro-apoptotic role of DUX4 was proposed, but as FSHD muscles are characterized by necrosis and inflammatory infiltrates, non-apoptotic pathways may be also involved. METHODS: We explored DUX4-mediated cell death by focusing on the role of one regulated necrosis pathway called necroptosis, which is regulated by RIPK3. We investigated the effect of necroptosis on cell death in vitro and in vivo experiments using RIPK3 inhibitors and a RIPK3-deficient transgenic mouse model. RESULTS: We showed in vitro that DUX4 expression causes a caspase-independent and RIPK3-mediated cell death in both myoblasts and myotubes. In vivo, RIPK3-deficient animals present improved body and muscle weights, a reduction of the aberrant activation of the DUX4 network genes, and an improvement of muscle histology. CONCLUSIONS: These results provide evidence for a role of RIPK3 in DUX4-mediated cell death and open new avenues of research.


Assuntos
Distrofia Muscular Facioescapuloumeral , Animais , Morte Celular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Mioblastos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA