Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Cell ; 185(12): 2116-2131.e18, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35662412

RESUMO

Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.


Assuntos
Anticorpos Monoclonais , Vacinas contra COVID-19/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Antivirais , COVID-19 , Vacinas contra COVID-19/administração & dosagem , Epitopos , Humanos , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
2.
Cell ; 185(14): 2422-2433.e13, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35772405

RESUMO

The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Testes de Neutralização , SARS-CoV-2/genética , África do Sul
3.
Cell ; 184(9): 2348-2361.e6, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33730597

RESUMO

The race to produce vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began when the first sequence was published, and this forms the basis for vaccines currently deployed globally. Independent lineages of SARS-CoV-2 have recently been reported: UK, B.1.1.7; South Africa, B.1.351; and Brazil, P.1. These variants have multiple changes in the immunodominant spike protein that facilitates viral cell entry via the angiotensin-converting enzyme-2 (ACE2) receptor. Mutations in the receptor recognition site on the spike are of great concern for their potential for immune escape. Here, we describe a structure-function analysis of B.1.351 using a large cohort of convalescent and vaccinee serum samples. The receptor-binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal antibody neutralization largely driven by E484K, although K417N and N501Y act together against some important antibody classes. In a number of cases, it would appear that convalescent and some vaccine serum offers limited protection against this variant.


Assuntos
Vacinas contra COVID-19/sangue , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , COVID-19/imunologia , COVID-19/terapia , COVID-19/virologia , Chlorocebus aethiops , Ensaios Clínicos como Assunto , Células HEK293 , Humanos , Imunização Passiva , Modelos Moleculares , Mutação/genética , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Células Vero , Soroterapia para COVID-19
4.
Cell ; 184(8): 2201-2211.e7, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33743891

RESUMO

SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células CHO , COVID-19/epidemiologia , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Pandemias , Ligação Proteica , Relação Estrutura-Atividade , Células Vero
5.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33852911

RESUMO

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Sítios de Ligação , COVID-19/terapia , COVID-19/virologia , Linhagem Celular , Humanos , Evasão da Resposta Imune , Imunização Passiva , Mutação , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/genética , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas/imunologia , Soroterapia para COVID-19
6.
Cell ; 184(16): 4220-4236.e13, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34242578

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone progressive change, with variants conferring advantage rapidly becoming dominant lineages, e.g., B.1.617. With apparent increased transmissibility, variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the United Kingdom. Here we study the ability of monoclonal antibodies and convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2, complement this with structural analyses of Fab/receptor binding domain (RBD) complexes, and map the antigenic space of current variants. Neutralization of both viruses is reduced compared with ancestral Wuhan-related strains, but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2, suggesting that individuals infected previously by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insights for immunization policy with future variant vaccines in non-immune populations.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/química , COVID-19/patologia , COVID-19/terapia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Chlorocebus aethiops , Cristalografia por Raios X , Humanos , Imunização Passiva , Testes de Neutralização , Domínios Proteicos/imunologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Soroterapia para COVID-19
7.
Nat Immunol ; 24(6): 991-1006, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37095377

RESUMO

Germinal center (GC) B cells undergo proliferation at very high rates in a hypoxic microenvironment but the cellular processes driving this are incompletely understood. Here we show that the mitochondria of GC B cells are highly dynamic, with significantly upregulated transcription and translation rates associated with the activity of transcription factor A, mitochondrial (TFAM). TFAM, while also necessary for normal B cell development, is required for entry of activated GC precursor B cells into the germinal center reaction; deletion of Tfam significantly impairs GC formation, function and output. Loss of TFAM in B cells compromises the actin cytoskeleton and impairs cellular motility of GC B cells in response to chemokine signaling, leading to their spatial disorganization. We show that B cell lymphoma substantially increases mitochondrial translation and that deletion of Tfam in B cells is protective against the development of lymphoma in a c-Myc transgenic mouse model. Finally, we show that pharmacological inhibition of mitochondrial transcription and translation inhibits growth of GC-derived human lymphoma cells and induces similar defects in the actin cytoskeleton.


Assuntos
Linfoma de Células B , Linfoma , Camundongos , Humanos , Animais , Linfócitos B/patologia , Centro Germinativo/patologia , Transcrição Gênica , Linfoma de Células B/genética , Linfoma de Células B/patologia , Camundongos Transgênicos , Microambiente Tumoral
8.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32887977

RESUMO

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Assuntos
Antígenos Virais/imunologia , Betacoronavirus/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Epitopos de Linfócito T/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Reino Unido , Vacinas Virais/imunologia
9.
Nature ; 625(7993): 189-194, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057663

RESUMO

In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect1,2. Modified ribonucleotides are commonly incorporated into therapeutic IVT mRNAs to decrease their innate immunogenicity3-5, but their effects on mRNA translation fidelity have not been fully explored. Here we demonstrate that incorporation of N1-methylpseudouridine into mRNA results in +1 ribosomal frameshifting in vitro and that cellular immunity in mice and humans to +1 frameshifted products from BNT162b2 vaccine mRNA translation occurs after vaccination. The +1 ribosome frameshifting observed is probably a consequence of N1-methylpseudouridine-induced ribosome stalling during IVT mRNA translation, with frameshifting occurring at ribosome slippery sequences. However, we demonstrate that synonymous targeting of such slippery sequences provides an effective strategy to reduce the production of frameshifted products. Overall, these data increase our understanding of how modified ribonucleotides affect the fidelity of mRNA translation, and although there are no adverse outcomes reported from mistranslation of mRNA-based SARS-CoV-2 vaccines in humans, these data highlight potential off-target effects for future mRNA-based therapeutics and demonstrate the requirement for sequence optimization.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Pseudouridina , RNA Mensageiro , Animais , Humanos , Camundongos , Vacina BNT162/efeitos adversos , Vacina BNT162/genética , Vacina BNT162/imunologia , Mudança da Fase de Leitura do Gene Ribossômico/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pseudouridina/análogos & derivados , Pseudouridina/metabolismo , Ribossomos/metabolismo , Biossíntese de Proteínas
10.
J Hepatol ; 80(1): 109-123, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37863203

RESUMO

BACKGROUND & AIMS: Comparative assessments of immunogenicity following different COVID-19 vaccines in patients with distinct liver diseases are lacking. SARS-CoV-2-specific T-cell and antibody responses were evaluated longitudinally after one to three vaccine doses, with long-term follow-up for COVID-19-related clinical outcomes. METHODS: A total of 849 participants (355 with cirrhosis, 74 with autoimmune hepatitis [AIH], 36 with vascular liver disease [VLD], 257 liver transplant recipients [LTRs] and 127 healthy controls [HCs]) were recruited from four countries. Standardised immune assays were performed pre and post three vaccine doses (V1-3). RESULTS: In the total cohort, there were incremental increases in antibody titres after each vaccine dose (p <0.0001). Factors associated with reduced antibody responses were age and LT, whereas heterologous vaccination, prior COVID-19 and mRNA platforms were associated with greater responses. Although antibody titres decreased between post-V2 and pre-V3 (p = 0.012), patients with AIH, VLD, and cirrhosis had equivalent antibody responses to HCs post-V3. LTRs had lower and more heterogenous antibody titres than other groups, including post-V3 where 9% had no detectable antibodies; this was heavily influenced by intensity of immunosuppression. Vaccination increased T-cell IFNγ responses in all groups except LTRs. Patients with liver disease had lower functional antibody responses against nine Omicron subvariants and reduced T-cell responses to Omicron BA.1-specific peptides compared to wild-type. 122 cases of breakthrough COVID-19 were reported of which 5/122 (4%) were severe. Of the severe cases, 4/5 (80%) occurred in LTRs and 2/5 (40%) had no serological response post-V2. CONCLUSION: After three COVID-19 vaccines, patients with liver disease generally develop robust antibody and T-cell responses to vaccination and have mild COVID-19. However, LTRs have sustained no/low antibody titres and appear most vulnerable to severe disease. IMPACT AND IMPLICATIONS: Standardised assessments of the immune response to different COVID-19 vaccines in patients with liver disease are lacking. We performed antibody and T-cell assays at multiple timepoints following up to three vaccine doses in a large cohort of patients with a range of liver conditions. Overall, the three most widely available vaccine platforms were immunogenic and appeared to protect against severe breakthrough COVID-19. This will provide reassurance to patients with chronic liver disease who were deemed at high risk of severe COVID-19 during the pre-vaccination era, however, liver transplant recipients had the lowest antibody titres and remained vulnerable to severe breakthrough infection. We also characterise the immune response to multiple SARS-CoV-2 variants and describe the interaction between disease type, severity, and vaccine platform. These insights may prove useful in the event of future viral infections which also require rapid vaccine development and delivery to patients with liver disease.


Assuntos
COVID-19 , Doenças do Sistema Digestório , Hepatite Autoimune , Hepatopatias , Transplante de Fígado , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Cirrose Hepática , Anticorpos , Imunidade , Anticorpos Antivirais , Transplantados
11.
Br J Haematol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867615

RESUMO

Immune responses to primary COVID-19 vaccination were investigated in 58 patients with follicular lymphoma (FL) as part of the PETReA trial of frontline therapy (EudraCT 2016-004010-10). COVID-19 vaccines (BNT162b2 or ChAdOx1) were administered before, during or after cytoreductive treatment comprising rituximab (depletes B cells) and either bendamustine (depletes CD4+ T cells) or cyclophosphamide-based chemotherapy. Blood samples obtained after vaccine doses 1 and 2 (V1, V2) were analysed for antibodies and T cells reactive to the SARS-CoV-2 spike protein using the Abbott Architect and interferon-gamma ELISpot assays respectively. Compared to 149 healthy controls, patients with FL exhibited lower antibody but preserved T-cell responses. Within the FL cohort, multivariable analysis identified low pre-treatment serum IgA levels and V2 administration during induction or maintenance treatment as independent determinants of lower antibody and higher T-cell responses, and bendamustine and high/intermediate FLIPI-2 score as additional determinants of a lower antibody response. Several clinical scenarios were identified where dichotomous immune responses were estimated with >95% confidence based on combinations of predictive variables. In conclusion, the immunogenicity of COVID-19 vaccines in FL patients is influenced by multiple disease- and treatment-related factors, among which B-cell depletion showed differential effects on antibody and T-cell responses.

12.
Clin Exp Immunol ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642547

RESUMO

Obesity and type 2 diabetes (DM) are risk factors for severe COVID-19 outcomes, which disproportionately affect South Asian populations. This study aims to investigate the humoral and cellular immune responses to SARS-CoV-2 in adult COVID-19 survivors with obesity and DM in Bangladesh. In this cross-sectional study, SARS-CoV-2-specific antibody and T cell responses were investigated in 63 healthy and 75 PCR-confirmed COVID-19 recovered individuals in Bangladesh, during the pre-vaccination first wave of the COVID-19 pandemic in 2020. In COVID-19 survivors, SARS-CoV-2 infection induced robust antibody and T cell responses, which correlated with disease severity. After adjusting for age, sex, DM status, disease severity, and time since onset of symptoms, obesity was associated with decreased neutralising antibody titers, and increased SARS-CoV-2 spike-specific IFN-γ response along with increased proliferation and IL-2 production by CD8+ T cells. In contrast, DM was not associated with SARS-CoV-2-specific antibody and T cell responses after adjustment for obesity and other confounders. Obesity is associated with lower neutralising antibody levels and higher T cell responses to SARS-CoV-2 post COVID-19 recovery, while antibody or T cell responses remain unaltered in DM.

13.
Diabet Med ; : e15378, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853385

RESUMO

BACKGROUND: Population-based studies describing the association between diabetes and increased risk of infection have largely been based in high-income countries. There is limited information describing the burden of infectious disease attributable to diabetes in low and middle-income countries. This study aimed to describe the burden and risk of infectious disease hospitalisation in people with diabetes compared to those without diabetes in northeastern Thailand. METHODS: In a retrospective cohort study using electronic health record data for 2012-2018 for 3.8 million people aged ≥20 years in northeastern Thailand, hospitalisation rates for any infectious diseases (ICD-10 codes A00-B99) were estimated and negative binomial regression used to estimate rate ratios (RR) for the association between diabetes and infectious disease hospitalisation adjusted for age, sex and area of residence. RESULTS: In this study, 164,177 people had a diagnosis of diabetes mellitus at any point over the study period. Infectious disease hospitalisation rates per 1000 person-years (95%CI) were 71.8 (70.9, 72.8), 27.7 (27.1, 28.3) and 7.5 (7.5, 7.5) for people with prevalent diabetes, incident diabetes and those without diabetes respectively. Diabetes was associated with a 4.6-fold higher risk of infectious disease hospitalisation (RR (95% CI) 4.59 (4.52, 4.66)). RRs for infectious disease hospitalisation were 3.38 (3.29, 3.47) for people with diabetes managed by lifestyle alone and 5.29 (5.20, 5.39) for people receiving prescriptions for diabetes drugs. CONCLUSIONS: In this Thai population, diabetes was associated with substantially increased risk of hospitalisation due to infectious diseases and people with diabetes who were on pharmacological treatment had a higher risk than those receiving lifestyle modification advice alone.

14.
Clin Infect Dis ; 76(2): 201-209, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36196614

RESUMO

BACKGROUND: People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are few data on longer term responses and the impact of a booster dose. METHODS: Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µL. Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced marker (AIM) assay, and T-cell proliferation. FINDINGS: In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and IgG ELISA results were significantly higher compared to Day 182 titers (P < .0001 for all 3). SARS-CoV-2 specific CD4+ T-cell responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent for Omicron. CONCLUSIONS: In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to known variants of concern (VOCs).


Assuntos
COVID-19 , Infecções por HIV , Adulto , Humanos , HIV , ChAdOx1 nCoV-19 , Vacina BNT162 , SARS-CoV-2 , COVID-19/prevenção & controle , Ativação Linfocitária , Vacinação , Infecções por HIV/tratamento farmacológico , Imunoglobulina G , Anticorpos Antivirais
15.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34662416

RESUMO

The soil bacterium Burkholderia pseudomallei is the causative agent of melioidosis and a significant cause of human morbidity and mortality in many tropical and subtropical countries. The species notoriously survives harsh environmental conditions but the genetic architecture for these adaptations remains unclear. Here we employed a powerful combination of genome-wide epistasis and co-selection studies (2,011 genomes), condition-wide transcriptome analyses (82 diverse conditions), and a gene knockout assay to uncover signals of "co-selection"-that is a combination of genetic markers that have been repeatedly selected together through B. pseudomallei evolution. These enabled us to identify 13,061 mutation pairs under co-selection in distinct genes and noncoding RNA. Genes under co-selection displayed marked expression correlation when B. pseudomallei was subjected to physical stress conditions, highlighting the conditions as one of the major evolutionary driving forces for this bacterium. We identified a putative adhesin (BPSL1661) as a hub of co-selection signals, experimentally confirmed a BPSL1661 role under nutrient deprivation, and explored the functional basis of co-selection gene network surrounding BPSL1661 in facilitating the bacterial survival under nutrient depletion. Our findings suggest that nutrient-limited conditions have been the common selection pressure acting on this species, and allelic variation of BPSL1661 may have promoted B. pseudomallei survival during harsh environmental conditions by facilitating bacterial adherence to different surfaces, cells, or living hosts.


Assuntos
Evolução Biológica , Burkholderia pseudomallei , Adesinas Bacterianas , Alelos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/fisiologia , Seleção Genética , Estresse Fisiológico
16.
Clin Exp Immunol ; 212(3): 249-261, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807499

RESUMO

T cells are important in preventing severe disease from SARS-CoV-2, but scalable and field-adaptable alternatives to expert T-cell assays are needed. The interferon-gamma release assay QuantiFERON platform was developed to detect T-cell responses to SARS-CoV-2 from whole blood with relatively basic equipment and flexibility of processing timelines. Forty-eight participants with different infection and vaccination backgrounds were recruited. Whole blood samples were analysed using the QuantiFERON SARS-CoV-2 assay in parallel with the well-established 'Protective Immunity from T Cells in Healthcare workers' (PITCH) ELISpot, which can evaluate spike-specific T-cell responses. The primary aims of this cross-sectional observational cohort study were to establish if the QuantiFERON SARS-Co-V-2 assay could discern differences between specified groups and to assess the sensitivity of the assay compared with the PITCH ELISpot. The QuantiFERON SARS-CoV-2 distinguished acutely infected individuals (12-21 days post positive PCR) from naïve individuals (P < 0.0001) with 100% sensitivity and specificity for SARS-CoV-2 T cells, whilst the PITCH ELISpot had reduced sensitivity (62.5%) for the acute infection group. Sensitivity with QuantiFERON for previous infection was 12.5% (172-444 days post positive test) and was inferior to the PITCH ELISpot (75%). Although the QuantiFERON assay could discern differences between unvaccinated and vaccinated individuals (55-166 days since second vaccination), the latter also had reduced sensitivity (44.4%) compared to the PITCH ELISpot (66.6%). The QuantiFERON SARS-CoV-2 assay showed potential as a T- cell evaluation tool soon after SARS-CoV-2 infection but has lower sensitivity for use in reliable evaluation of vaccination or more distant infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos Transversais , Testes de Liberação de Interferon-gama , Vacinação , Anticorpos Antivirais
17.
PLoS Pathog ; 17(9): e1009804, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529726

RESUMO

Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49-14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08-18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 -a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.


Assuntos
COVID-19/imunologia , COVID-19/mortalidade , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos B/imunologia , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo , Estudos de Coortes , Estado Terminal/mortalidade , Feminino , Humanos , Imunofenotipagem , Influenza Humana/imunologia , Lectinas Tipo C/imunologia , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/imunologia , Gravidade do Paciente
18.
Br J Haematol ; 198(4): 668-679, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35655410

RESUMO

Allogeneic haematopoietic stem cell transplant (HSCT) recipients remain at high risk of adverse outcomes from coronavirus disease 2019 (COVID-19) and emerging variants. The optimal prophylactic vaccine strategy for this cohort is not defined. T cell-mediated immunity is a critical component of graft-versus-tumour effect and in determining vaccine immunogenicity. Using validated anti-spike (S) immunoglobulin G (IgG) and S-specific interferon-gamma enzyme-linked immunospot (IFNγ-ELIspot) assays we analysed response to a two-dose vaccination schedule (either BNT162b2 or ChAdOx1) in 33 HSCT recipients at ≤2 years from transplant, alongside vaccine-matched healthy controls (HCs). After two vaccines, infection-naïve HSCT recipients had a significantly lower rate of seroconversion compared to infection-naïve HCs (25/32 HSCT vs. 39/39 HCs no responders) and had lower S-specific T-cell responses. The HSCT recipients who received BNT162b2 had a higher rate of seroconversion compared to ChAdOx1 (89% vs. 74%) and significantly higher anti-S IgG titres (p = 0.022). S-specific T-cell responses were seen after one vaccine in HCs and HSCT recipients. However, two vaccines enhanced S-specific T-cell responses in HCs but not in the majority of HSCT recipients. These data demonstrate limited immunogenicity of two-dose vaccination strategies in HSCT recipients, bolstering evidence of the need for additional boosters and/or alternative prophylactic measures in this group.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Transplante de Células-Tronco Hematopoéticas , Fatores Etários , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , Vacina BNT162/uso terapêutico , Transplante de Medula Óssea/efeitos adversos , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , Vacinas contra COVID-19/uso terapêutico , ChAdOx1 nCoV-19/imunologia , ChAdOx1 nCoV-19/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Soroconversão , Transplante Homólogo/efeitos adversos , Vacinação/efeitos adversos
19.
Clin Exp Immunol ; 209(1): 90-98, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35522978

RESUMO

T-cell responses to SARS-CoV-2 following infection and vaccination are less characterized than antibody responses, due to a more complex experimental pathway. We measured T-cell responses in 108 healthcare workers (HCWs) using the commercialized Oxford Immunotec T-SPOT Discovery SARS-CoV-2 assay service (OI T-SPOT) and the PITCH ELISpot protocol established for academic research settings. Both assays detected T-cell responses to SARS-CoV-2 spike, membrane, and nucleocapsid proteins. Responses were significantly lower when reported by OI T-SPOT than by PITCH ELISpot. Four weeks after two doses of either Pfizer/BioNTech BNT162b or ChAdOx1 nCoV-19 AZD1222 vaccine, the responder rate was 63% for OI T-SPOT Panels 1 + 2 (peptides representing SARS-CoV-2 spike protein excluding regions present in seasonal coronaviruses), 69% for OI T-SPOT Panel 14 (peptides representing the entire SARS-CoV-2 spike), and 94% for the PITCH ELISpot total spike. The two OI T-SPOT panels correlated strongly with each other showing that either readout quantifies spike-specific T-cell responses, although the correlation between the OI T-SPOT panels and the PITCH ELISpot total spike was moderate. The standardization, relative scalability, and longer interval between blood acquisition and processing are advantages of the commercial OI T-SPOT assay. However, the OI T-SPOT assay measures T-cell responses at a significantly lower magnitude compared to the PITCH ELISpot assay, detecting T-cell responses in a lower proportion of vaccinees. This has implications for the reporting of low-level T-cell responses that may be observed in patient populations and for the assessment of T-cell durability after vaccination.


Assuntos
Vacina BNT162 , COVID-19 , ChAdOx1 nCoV-19 , Linfócitos T , Anticorpos Antivirais , Vacina BNT162/imunologia , COVID-19/prevenção & controle , ChAdOx1 nCoV-19/imunologia , Pessoal de Saúde , Humanos , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Linfócitos T/imunologia , Vacinação
20.
Emerg Infect Dis ; 27(2): 463-470, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496230

RESUMO

Melioidosis is a life-threatening infectious disease caused by the gram-negative bacillus Burkholderia pseudomallei. An effective vaccine is needed, but data on protective immune responses in human melioidosis are lacking. We used ELISA and an antibody-dependent cellular phagocytosis assay to identify the major features of protective antibodies in patients with acute melioidosis in Thailand. We found that high levels of B. pseudomallei-specific IgG2 are associated with protection against death in a multivariable logistic regression analysis adjusting for age, diabetes, renal disease, and neutrophil count. Serum from melioidosis survivors enhanced bacteria uptake into human monocytes expressing FcγRIIa-H/R131, an intermediate-affinity IgG2-receptor, compared with serum from nonsurvivors. We did not find this enhancement when using monocytes carrying the low IgG2-affinity FcγRIIa-R131 allele. The findings indicate the importance of IgG2 in protection against death in human melioidosis, a crucial finding for antibody-based therapeutics and vaccine development.


Assuntos
Anticorpos Antibacterianos/imunologia , Burkholderia pseudomallei , Imunoglobulina G/imunologia , Melioidose , Adulto , Ensaio de Imunoadsorção Enzimática , Humanos , Melioidose/epidemiologia , Melioidose/imunologia , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA