Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14856-14863, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38717994

RESUMO

Uranyl fluoride (UO2F2) particles (<20 µm) were subjected to first-of-its-kind analysis via simultaneous laser-induced breakdown spectroscopy (LIBS) and laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS). Briefly, a nanosecond pulsed high-energy laser was focused onto the sample (particle) surface. In a single laser pulse, the UO2F2 particle was excited/ionized within the microplasma volume, and the emission of light was collected via fiber optics such that emission spectroscopy could be employed for the detection of uranium (U) and fluorine (F). The ablated particle was simultaneously transported into the MC-ICP-MS for high precision isotopic (i.e., 234U, 235U, and 238U) analysis. This method, LIBS/LA-MC-ICP-MS was optimized and employed to rapidly measure 80+ UO2F2 particles, which were subjected to different calcination processes, which results in varying degrees of F loss from the individual particles. In measuring the particles, the average F/U ratios for the populations treated at 100 and 500 °C were 2.78 ± 1.28 and 1.01 ± 0.50, respectively, confirming loss of F through the calcination process. The average 235U/238U on the particle populations for the 100 and 500 °C were 0.007262 (22) and 0.007231 (23), which was determined to be <0.2% from the expected value. The 234U/238U ratios on the same particles were 0.000053 (11) and 0.000050 (10) for the 100 and 500 °C, respectively, <10% from the expected value. Notably, each population was analyzed in under 5 min, demonstrating the truly rapid analysis technique presented here.

2.
Analyst ; 149(8): 2244-2251, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38415746

RESUMO

A microextraction liquid sampling system coupled to a quadrupole inductively coupled plasma-mass spectrometer (ICP-MS) was utilized to spatially discern uranium particles, isotopically, on a cellulose-based swipe material (i.e., J-type swipe). These types of swipes are often used by the International Atomic Energy Agency (IAEA) as part of their environmental sampling program. A grid was created such that extraction locations covered the center circle (n = 34 without overlapping). Uranium (U) particulates (<20 µm) of varying U isotopic abundance and chemical form (i.e., uranyl fluoride and uranyl nitrate hexahydrate) were mechanically placed on the swipes in random locations and detected via the microextraction-ICP-MS methodology. Heat maps were subsequently generated to show the placement of the particulate with their respective intensity and isotopic determination. This detection of the uranium particulates, via isotopic determination, agreed with reference values for these materials. Additionally, depleted (235U/238U = 0.002) uranium particulates were placed directly within a clay matrix, on the swipe surface, and subjected to analysis by microextraction-ICP-MS. The mapping of the swipe demonstrated, for the first time, the employment of the microextraction-ICP-MS method for extracting sample from a complex matrix, and correctly identifying the uranium isotopic composition. This example ultimately demonstrates the utility of the methodology for detecting particles of interest in complex matrices.

3.
Anal Chem ; 95(43): 15867-15874, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37801814

RESUMO

The microextraction sampling technique was integrated with triple quadrupole─inductively coupled plasma-mass spectrometry (TQ-ICP-MS) to directly sample and measure the isotopic compositions of uranium (U) and plutonium (Pu) from cotton swipes. Once extracted, the U/Pu were directed into the TQ-ICP-MS instrument for isotopic determination. Carbon dioxide (CO2) and helium (He) gases were delivered to a collision reaction cell within the ICP-MS system for ion separation. The CO2 reacts with the U+ forming UO+ which is ultimately separated from the Pu+ ions of interest in the third quadrupole. This study demonstrates direct liquid extraction of U/Pu from a solid surface and subsequent measurement by TQ-ICP-MS in <60 s. Flow rates were optimized (0.3 mL min-1 CO2 and 5 mL min-1 He) in the reaction cell of the ICP-MS system to maximize the Pu signal while minimizing U interferences (i.e., 238U+ tail and 238UH+) at m/z 239. Low levels of Pu (∼2 pg) were deposited on a cotton swipe along with U at concentrations ranging from 20 to 200 ng. The 240Pu/239Pu ratio was measured with <7% relative difference from the certified value at all U concentrations. Major and minor U isotope ratios were also measured with <4% relative difference. This highlights that the microextraction-TQ-ICP-MS method can extract a mixed U/Pu sample directly from a cotton swipe and measure both isotopic systems without chemical separation.

4.
Chem Geol ; 5402020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34866642

RESUMO

The performance of multi-collector secondary ion mass spectrometry (MC-SIMS) for Mg isotope ratio analysis was evaluated using 17 olivine and 5 pyroxene reference materials (RMs). The Mg isotope composition of these RMs was accurately and precisely determined by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and these measured isotope ratios were used to evaluate SIMS instrumental mass bias as a function of the forsterite (Fo) content of olivine. The magnitude of the Mg isotope matrix effects were ~3‰ in δ25Mg, and are a complex function of olivine Fo content, that ranged from Fo59.3 to Fo100. In addition to these Mg isotope matrix effects, Si+ ion yields and Mg+/Si+ ion ratios varied as a complex function of the Fo content of the olivine RMs. For example, Si+ ion yields varied by ~33%. Based on the observations, we propose instrumental bias correction procedures for SIMS Mg isotope analysis of olivine using a combination of Mg+/Si+ ratios and Fo content of olivine. Using this correction method, the accuracy of δ25Mg analyses is 0.3‰, except for analysis of olivine with Fo86-88 where instrumental biases and Mg+/Si+ ratios change dramatically with Fo content, making it more difficult to assess the accuracy of Mg isotope ratio measurements by SIMS over this narrow range of Fo content. Five pyroxene RMs (3 orthopyroxenes and 2 clinopyroxenes) show smaller ranges of instrumental bias (~1.4‰ in δ25Mg) as compared to the olivine RMs. The instrumental bias for the 3 orthopyroxene RMs do not define a linear relationship with respect to enstatite (En) content, that ranged from En85.5 -96.3. The clinopyroxene RMs have similar En and wollastonite (Wo) contents but have δ25Mg values that differ by 0.5‰ relative to their δ25Mg values determined by MC-ICP-MS. These results indicate that additional factors (e.g., minor element abundances) likely contribute to SIMS instrumental mass fractionation. In order to better correct for these SIMS matrix effects, additional pyroxene RMs with various chemical compositions and known Mg isotope ratios are needed.

5.
Anal Methods ; 16(20): 3192-3201, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38639200

RESUMO

This work describes an analytical procedure, single particle-inductively coupled plasma-time-of-flight-mass spectrometry (SP-ICP-TOF-MS), that was developed to determine the platinum binding efficiency of protein-coated magnetic microparticles. SP-ICP-TOF-MS is advantageous due to its ability to quasi-simultaneously detect all nuclides (7Li-242Pu), allowing for both platinum and iron (composition of magnetic microparticles) to be measured concurrently. This method subsequently allows for the differentiation between bound and unbound platinum. The 1 µm magnetic microparticles were fully characterized for their iron concentration, particle concentration, and trace element composition by bulk digestion-ICP-MS and SP-ICP-TOF-MS. The results of both approaches agreed with the certificate values. Using the single particle methodology the platinum loading was quantified to be to 0.18 ± 0.02 fg per particle and 0.32 ± 0.02 fg per particle, for the streptavidin-coated and azurin-coated microparticles, respectively. Both streptavidin-coated and the azurin-coated microparticles had a particle-platinum association of >65%. Platinum bound samples were also analyzed via bulk digestion-based ICP-MS. The bulk ICP-MS results overestimated platinum loading due to free platinum in the samples. This highlights the importance of single particle analysis for a closer inspection of platinum binding performance. The SP-ICP-TOF-MS approach offers advantages over typical bulk digestion methods by eliminating laborious sample preparation, enabling differentiation between bound/unbound platinum in a solution, and quantification of platinum on a particle-by-particle basis. The procedure presented here enables quantification of metal content per particle, which could be broadly implemented for other single particle applications.


Assuntos
Espectrometria de Massas , Platina , Platina/química , Espectrometria de Massas/métodos , Microesferas , Ferro/química , Ferro/análise , Estreptavidina/química , Tamanho da Partícula , Nanopartículas de Magnetita/química
6.
Nanomaterials (Basel) ; 13(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37110906

RESUMO

The work described herein assesses the ability to characterize gold nanoparticles (Au NPs) of 50 and 100 nm, as well as 60 nm silver shelled gold core nanospheres (Au/Ag NPs), for their mass, respective size, and isotopic composition in an automated and unattended fashion. Here, an innovative autosampler was employed to mix and transport the blanks, standards, and samples into a high-efficiency single particle (SP) introduction system for subsequent analysis by inductively coupled plasma-time of flight-mass spectrometry (ICP-TOF-MS). Optimized NP transport efficiency into the ICP-TOF-MS was determined to be >80%. This combination, SP-ICP-TOF-MS, allowed for high-throughput sample analysis. Specifically, 50 total samples (including blanks/standards) were analyzed over 8 h, to provide an accurate characterization of the NPs. This methodology was implemented over the course of 5 days to assess its long-term reproducibility. Impressively, the in-run and day-to-day variation of sample transport is assessed to be 3.54 and 9.52% relative standard deviation (%RSD), respectively. The determination of Au NP size and concentration was of <5% relative difference from the certified values over these time periods. Isotopic characterization of the 107Ag/109Ag particles (n = 132,630) over the course of the measurements was determined to be 1.0788 ± 0.0030 with high accuracy (0.23% relative difference) when compared to the multi-collector-ICP-MS determination.

7.
Anal Chim Acta ; 1209: 339836, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35569868

RESUMO

Direct isotope ratio analysis of solid uranium particulates on cotton swipes was achieved using a solution-based microextraction technique, coupled to a quadrupole inductively coupled plasma - mass spectrometer (ICP-MS). This microextraction-ICP-MS methodology provides rapid isotopic analysis which could be applicable to nuclear safeguards measurements. Particulates of uranyl nitrate hexahydrate (UO2(NO3)2·6H2O) and uranyl fluoride (UO2F2) ranging from 6 µm to 40 µm in length were transferred to cotton swipes with a particle manipulator. The microextraction probe then delivers a 5% nitric acid (HNO3) solvent onto the swipe surface to extract the uranium species. The extracted sample is then delivered to the ICP-MS for isotopic determination. The majority of uranium signal (∼99% and ∼94% for UO2(NO3)2·6H2O and UO2F2, respectively) was detected in the first 15 s extraction, while subsequent extractions on the same location had low or no U signal, suggesting near complete removal of the solid uranium compounds from the swipe surface. Ten samples (for each of the uranium compounds), were analyzed for their isotopic composition. For UO2(NO3)2·6H2O, the determined isotope ratios resulted in a % relative difference (% RD) from the referenced isotope ratios of 0.97, 1.0, and 7.3% for 234U/238U, 235U/238U, and 236U/238U, respectively. The % RD of the UO2F2 isotope ratios were 1.9 and 0.60% for 234U/238U and 235U/238U, respectively. The preliminary limits of detection were determined to be 0.002, 0.4, and 60 pg for 234U, 235U and 238U, respectively This work demonstrates that microextraction ICP-MS is a rapid and sensitive method that could directly determine uranium isotope ratios of UO2(NO3)2·6H2O and UO2F2 particulates on cotton swipes.


Assuntos
Compostos de Urânio , Urânio , Isótopos , Espectrometria de Massas/métodos , Têxteis , Urânio/análise
8.
Metallomics ; 14(7)2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35790145

RESUMO

Quantifying the chemical composition of fast-growing hard tissues in the environment can shed valuable information in terms of understanding ecosystems both prehistoric and current. Changes in chemical composition can be correlated with environmental conditions and can provide information about the organism's life. Sharks can lose 0.1 to 1.1 teeth/day, depending on species, which offers a unique opportunity to record environmental changes over a short duration of time. Shark teeth contain a biomineral phase that is made up of fluorapatite [Ca5(PO4)3F], and the F distribution within the tooth can be correlated to tooth hardness. Typically, this is determined by bulk acid digestion, energy-dispersive X-ray spectroscopy (EDS), or wavelength-dispersive spectroscopy. Here we present laser-induced breakdown spectroscopy (LIBS) as an alternative and faster approach for determining F distribution within shark teeth. Using a two-volume laser ablation chamber (TwoVol3) with innovative embedded collection optics for LIBS, shark teeth were investigated from sand tiger (Carcharias Taurus), tiger (Galeocerdo Cuvier), and hammerhead sharks (Sphyrnidae). Fluorine distribution was mapped using the CaF 603 nm band (CaF, Β 2Σ+ → X 2Σ+) and quantified using apatite reference materials. In addition, F measurements were cross referenced with EDS analyses to validate the findings. Distributions of F (603 nm), Na (589 nm), and H (656 nm) within the tooth correlate well with the expected biomineral composition and expected tooth hardness. This rapid methodology could transform the current means of determining F distribution, particularly when large sample specimens (350 mm2, presented here) and large quantities of specimens are of interest.


Assuntos
Flúor , Tubarões , Animais , Ecossistema , Fluoretos , Lasers , Espectrometria por Raios X
9.
Anal Methods ; 14(44): 4466-4473, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36317583

RESUMO

An automated microextraction method coupled to an inductively coupled plasma - mass spectrometer (ICP-MS) was developed for the direct analysis of solid uranium particulates on the surface of cotton swipes. The microextraction probe extracts particulates from the sample surface, in a flowing solvent, and directs the removed analyte to an ICP-MS for isotopic determination. The automated system utilizes a mechanical XY stage that is software controlled with the capability of saving and returning to specific locations and a camera focused to the swipe surface for optimal viewing of the extracted locations (i.e., material present). Here, particulates (n = 135) were extracted and measured by ICP-MS, including 35 depleted uranyl nitrate hexahydrate (UN) (used for mass bias corrections), 50 uranyl fluoride (UO2F2), and 50 uranyl acetate (UAc) particulates. Blank extractions were performed on the cotton swipes between triplicate sample analyses. Between each swipe extraction, the probe was sent between two wells containing 10% and 5% HNO3 to clean the probe head and to eliminate any analyte carryover between particulates. The measured 235U/238U and 234U/238U isotope ratios for the UO2F2 particulates were 0.00725(8) and 0.000054(4), a percent relative difference (% RD) of -0.041% and -1.7% from the reference isotope ratios determined in-lab through multi-collector ICP-MS analysis of dissolved aliquots of the U material. The UAc samples had a measured 235U/238U isotope ratio of 0.00206(7), a -0.96% relative difference from the reference value of 0.00208(1). The 234U/238U and 236U/238U isotope ratios were 0.000008(1) and 0.000031(4), -5.1% RD and -4.3% RD, respectively. The automated sample stage enabled seamless and rapid particle analysis, leading to a significant increase in throughput versus what was previously possible. Additionally, the saved location capability reduced user sampling error as sampling locations were easily stored and recalled. Analysis of U particles on the swipe surface - including blanks, mass bias, and triplicate extractions - was completed in less than an hour without any sample preparation necessary.


Assuntos
Urânio , Urânio/análise , Isótopos/análise , Espectrometria de Massas/métodos , Poeira/análise
10.
Geochim Cosmochim Acta ; 301: 70-90, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34316079

RESUMO

A close relationship between CM and CO chondrites has been suggested by previous petrologic and isotopic studies, leading to the suggestion that they may originate from similar precursor materials or even a common parent body. In this study, we evaluate the genetic relationship between CM and CO chondrites using Ti, Cr, and O isotopes. We first provide additional constraints on the ranges of ε50Ti and ε54Cr values of bulk CM and CO chondrites by reporting the isotopic compositions of CM2 chondrites Murchison, Murray, and Aguas Zarcas and the CO3.8 chondrite Isna. We then report the ε50Ti and ε54Cr values for several ungrouped and anomalous carbonaceous chondrites that have been previously reported to exhibit similarities to the CM and/or CO chondrite groups, including Elephant Moraine (EET) 83226, EET 83355, Grosvenor Mountains (GRO) 95566, MacAlpine Hills (MAC) 87300, MAC 87301, MAC 88107, and Northwest Africa (NWA) 5958, and the O-isotope compositions of a subset of these samples. We additionally report the Ti, Cr, and O isotopic compositions of additional ungrouped chondrites LaPaz Ice Field (LAP) 04757, LAP 04773, Lewis Cliff (LEW) 85332, and Coolidge to assess their potential relationships with known carbonaceous and ordinary chondrite groups. LAP 04757 and LAP 04773 exhibit isotopic compositions indicating they are low-FeO ordinary chondrites. The isotopic compositions of Murchison, Murray, Aguas Zarcas, and Isna extend the compositional ranges defined by the CM and CO chondrites in ε50Ti versus ε54Cr space. The majority of the ungrouped carbonaceous chondrites with documented similarities to the CM and/or CO chondrites plot outside the CM and CO group fields in plots of ε50Ti versus ε54Cr, Δ17O versus ε50Ti, and Δ17O versus ε54Cr. Therefore, based on differences in their Ti, Cr, and O isotopic compositions, we conclude that the CM, CO, and ungrouped carbonaceous chondrites likely represent samples of multiple distinct parent bodies. We also infer that these parent bodies formed from precursor materials that shared similar isotopic compositions, which may indicate formation in regions of the protoplanetary disk that were in close proximity to each other.

11.
Nat Commun ; 9(1): 3036, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072693

RESUMO

The ranges in chemical composition of ancient achondrite meteorites are key to understanding the diversity and geochemical evolution of planetary building blocks. These achondrites record the first episodes of volcanism and crust formation, the majority of which are basaltic. Here we report data on recently discovered volcanic meteorite Northwest Africa (NWA) 11119, which represents the first, and oldest, silica-rich (andesitic to dacitic) porphyritic extrusive crustal rock with an Al-Mg age of 4564.8 ± 0.3 Ma. This unique rock contains mm-sized vesicles/cavities and phenocrysts that are surrounded by quench melt. Additionally, it possesses the highest modal abundance (30 vol%) of free silica (i.e., tridymite) compared to all known meteorites. NWA 11119 substantially widens the range of volcanic rock compositions produced within the first 2.5-3.5 million years of Solar System history, and provides direct evidence that chemically evolved crustal rocks were forming on planetesimals prior to the assembly of the terrestrial planets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA