RESUMO
Since the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, there has been a global hunt for the origin of the ongoing pandemic. Zhou et al. provide further evidence of coronavirus diversity, including four novel SARS-CoV-2-related viruses, in bat species in Yunnan province, China.
Assuntos
COVID-19 , Quirópteros , Animais , China , Humanos , Pandemias , SARS-CoV-2RESUMO
BACKGROUND: Nipah virus (NiV), a highly lethal virus in humans, circulates in Pteropus bats throughout South and Southeast Asia. Difficulty in obtaining viral genomes from bats means we have a poor understanding of NiV diversity. METHODS: We develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N=257, 175 from bats, 73 from humans) from six countries over 22 years (1999-2020). We divide the four major NiV sublineages into 15 genetic clusters. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate the presence and the average size of genetic clusters per area. RESULTS: We find that, within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at areas of 1500-2000km2. We estimate that each genetic cluster occupies an average area of 1.3million km2 (95%CI: 0.6-2.3 million), with 14 clusters in an area of 100,000km2 (95%CI: 6-24). In the few sites in Bangladesh and Cambodia where genomic surveillance has been concentrated, we estimate that most clusters have been identified, but only â¼15% of overall NiV diversity has been uncovered. CONCLUSION: Our findings are consistent with entrenched co-circulation of distinct lineages, even within roosts, coupled with slow migration over larger spatial scales.
RESUMO
The dengue virus nonstructural protein 1 (NS1) is a secreted virulence factor that modulates complement, activates immune cells and alters endothelial barriers. The molecular basis of these events remains incompletely understood. Here we describe a functional high affinity complex formed between NS1 and human high-density lipoproteins (HDL). Collapse of the soluble NS1 hexamer upon binding to the lipoprotein particle leads to the anchoring of amphipathic NS1 dimeric subunits into the HDL outer layer. The stable complex can be visualized by electron microscopy as a spherical HDL with rod-shaped NS1 dimers protruding from the surface. We further show that the assembly of NS1-HDL complexes triggers the production of pro-inflammatory cytokines in human primary macrophages while NS1 or HDL alone do not. Finally, we detect NS1 in complex with HDL and low-density lipoprotein (LDL) particles in the plasma of hospitalized dengue patients and observe NS1-apolipoprotein E-positive complexes accumulating overtime. The functional reprogramming of endogenous lipoprotein particles by NS1 as a means to exacerbate systemic inflammation during viral infection provides a new paradigm in dengue pathogenesis.
Assuntos
Vírus da Dengue , Dengue , Dengue/metabolismo , Vírus da Dengue/fisiologia , Humanos , Lipoproteínas HDL/metabolismo , Fagocitose , Proteínas não Estruturais Virais/metabolismoRESUMO
Enterovirus 71 (EV-A71) is a major public health problem, causing a range of illnesses from hand-foot-and-mouth disease to severe neurological manifestations. EV-A71 strains have been phylogenetically classified into eight genogroups (A to H), based on their capsid-coding genomic region. Genogroups B and C have caused large outbreaks worldwide and represent the two canonical circulating EV-A71 subtypes. Little is known about the antigenic diversity of new genogroups as compared to the canonical ones. Here, we compared the antigenic features of EV-A71 strains that belong to the canonical B and C genogroups and to genogroups E and F, which circulate in Africa. Analysis of the peptide sequences of EV-A71 strains belonging to different genogroups revealed a high level of conservation of the capsid residues involved in known linear and conformational neutralization antigenic sites. Using a published crystal structure of the EV-A71 capsid as a model, we found that most of the residues that are seemingly specific to some genogroups were mapped outside known antigenic sites or external loops. These observations suggest a cross-neutralization activity of anti-genogroup B or C antibodies against strains of genogroups E and F. Neutralization assays were performed with diverse rabbit and mouse anti-EV-A71 sera, anti-EV-A71 human standards and a monoclonal neutralizing antibody. All the batches of antibodies that were tested successfully neutralized all available isolates, indicating an overall broad cross-neutralization between the canonical genogroups B and C and genogroups E and F. A panel constituted of more than 80 individual human serum samples from Cambodia with neutralizing antibodies against EV-A71 subgenogroup C4 showed quite similar cross-neutralization activities between isolates of genogroups C4, E and F. Our results thus indicate that the genetic drift underlying the separation of EV-A71 strains into genogroups A, B, C, E and F does not correlate with the emergence of antigenically distinct variants.
Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Humanos , Camundongos , Animais , Coelhos , Enterovirus Humano A/genética , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Genótipo , Anticorpos MonoclonaisRESUMO
Hepatitis C virus (HCV) infection remains a challenge to human public health despite the development of highly effective direct-acting antivirals (DAAs). Sofosbuvir (SOF), a key component in most DAA-based anti-HCV cocktail regimens, is a potent viral RNA polymerase (NS5B) inhibitor with a high barrier to drug resistance. The serine-to-threonine mutation at NS5B 282 (S282T) confers the SOF resistance, but severely impairs viral replication in most HCV genotypes (GTs) and cannot be stably maintained after the termination of the SOF-based therapies. In this study, we first developed a new HCV GT-6a subgenomic replicon PR58D6. Next, we selected SOF-resistant PR58D6 variants by culturing the replicon cells in the presence of SOF. Interestingly, unlike many other HCV replicons which require additional mutations to compensate for the S282T-inducing fitness loss, S282T alone in PR58D6 is genetically stable and confers the SOF resistance without significantly impairing viral replication. Furthermore, we showed that amino acid residue at NS5B 74 (R74) and 556 (D556) which are conserved in GT 6a HCV contribute to efficient replication of PR58D6 containing S282T. Finally, we showed that the G556D mutation in NS5B could rescue the replication deficiency of the S282T in JFH1, a GT-2a replicon. In conclusion, we showed that a novel GT-6a HCV replicon may easily render SOF resistance, which may call for attention to potential drug resistance during DAA therapies of HCV GT-6a patients.
Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Sofosbuvir/farmacologia , RNA Subgenômico , Hepacivirus/genética , Antivirais/farmacologia , Hepatite C/tratamento farmacológico , GenótipoRESUMO
In epidemiology, endemicity characterizes sustained pathogen circulation in a geographical area, which involves a circulation that is not being maintained by external introductions. Because it could potentially shape the design of public health interventions, there is an interest in fully uncovering the endemic pattern of a disease. Here, we use a phylogeographic approach to investigate the endemic signature of rabies virus (RABV) circulation in Cambodia. Cambodia is located in one of the most affected regions by rabies in the world, but RABV circulation between and within Southeast Asian countries remains understudied. Our analyses are based on a new comprehensive data set of 199 RABV genomes collected between 2014 and 2017 as well as previously published Southeast Asian RABV sequences. We show that most Cambodian sequences belong to a distinct clade that has been circulating almost exclusively in Cambodia. Our results thus point towards rabies circulation in Cambodia that does not rely on external introductions. We further characterize within-Cambodia RABV circulation by estimating lineage dispersal metrics that appear to be similar to other settings, and by performing landscape phylogeographic analyses to investigate environmental factors impacting the dispersal dynamic of viral lineages. The latter analyses do not lead to the identification of environmental variables that would be associated with the heterogeneity of viral lineage dispersal velocities, which calls for a better understanding of local dog ecology and further investigations of the potential drivers of RABV spread in the region. Overall, our study illustrates how phylogeographic investigations can be performed to assess and characterize viral endemicity in a context of relatively limited data.
Assuntos
Vírus da Raiva , Raiva , Animais , Cães , Raiva/epidemiologia , Raiva/veterinária , Camboja/epidemiologia , Vírus da Raiva/genética , Filogeografia , Análise de Sequência de DNA , FilogeniaRESUMO
Global dengue incidence has increased dramatically over the past few decades from approximately 500 000 reported cases in 2000 to over 5 million in 2019. This trend has been attributed to population growth in endemic areas, rapid unplanned urbanization, increasing global connectivity, and climate change expanding the geographic range of the Aedes spp. mosquito, among other factors. Reporting dengue surveillance data is key to understanding the scale of the problem, identifying important changes in the landscape of disease, and developing policies for clinical management, vector control and vaccine rollout. However, surveillance practices are not standardized, and data may be difficult to interpret particularly in low- and middle-income countries with fragmented health-care systems. The latest national dengue surveillance data for Cambodia was published in 2010. Since its publication, the country experienced marked changes in health policies, population demographics, climate and urbanization. How these changes affected dengue control remains unknown. In this article, we summarize two decades of policy changes, published literature, country statistics, and dengue case data collected by the Cambodia National Dengue Control Programme to: (i) identify important changes in the disease landscape; and (ii) derive lessons to inform future surveillance and disease control strategies. We report that while dengue case morbidity and mortality rates in Cambodia fell between 2002 and 2020, dengue incidence doubled and age at infection increased. Future national surveillance, disease prevention and treatment, and vector control policies will have to account for these changes to optimize disease control.
Le taux d'incidence de la dengue dans le monde a considérablement augmenté au cours des dernières décennies, passant d'environ 500 000 cas notifiés en 2000 à plus de 5 millions en 2019. Cette tendance est attribuée à la croissance démographique dans les zones d'endémie, à l'urbanisation rapide non planifiée, au développement de la connectivité à l'échelle internationale, ainsi qu'au changement climatique, qui agrandit le territoire géographique du moustique Aedes spp., entre autres. La communication des données de surveillance de la dengue est essentielle pour comprendre l'étendue du problème, identifier les principales variations de contexte entourant la maladie et mettre au point des politiques pour la prise en charge clinique, la lutte contre les vecteurs et le déploiement des vaccins. Les pratiques en matière de surveillance ne sont toutefois pas standardisées et les données peuvent être difficiles à interpréter, surtout dans les pays à revenu faible et intermédiaire où les systèmes de soins de santé sont fragmentés. Les données de surveillance les plus récentes concernant la dengue au Cambodge ont été publiées en 2010. Depuis leur publication, le pays a subi de profondes mutations au niveau des politiques de santé, de l'évolution démographique, du climat et de l'urbanisation. L'impact de ces mutations sur la lutte contre la dengue reste à établir. Dans le présent article, nous résumons deux décennies d'amendements politiques, de documentation, de statistiques nationales et d'informations collectées sur les cas par le programme cambodgien de lutte contre la dengue afin de: (i) définir les changements importants survenus dans le contexte entourant la maladie; mais aussi (ii) tirer des leçons en vue d'élaborer, à l'avenir, des stratégies de surveillance et de lutte contre la maladie. Nous signalons qu'en dépit d'une baisse des taux de morbidité et de mortalité liés aux cas de dengue entre 2002 et 2020 au Cambodge, son incidence a doublé et l'âge des patients au moment de l'infection a augmenté. Les futures politiques nationales de surveillance, de prévention et de traitement de la dengue, mais aussi de lutte contre ses vecteurs, devront tenir compte de ces changements de façon à mieux maîtriser la maladie.
La incidencia del dengue a nivel mundial ha aumentado considerablemente en las últimas décadas, desde aproximadamente 500 000 casos notificados en el año 2000 a más de 5 millones en 2019. Esta tendencia se ha atribuido al crecimiento de la población en zonas endémicas, a una urbanización rápida y no planificada, al aumento de la conectividad a nivel mundial y al cambio climático, que está permitiendo una distribución geográfica más amplia del mosquito Aedes spp., entre otros factores. Para comprender la magnitud del problema resulta clave la notificación de datos sobre vigilancia del dengue, la identificación de cambios importantes dentro del escenario de la enfermedad, la creación de políticas enfocadas a la gestión clínica, así como el control de vectores y la implantación de la vacuna. Sin embargo, las prácticas sobre vigilancia no están estandarizadas y es posible que sea difícil interpretar los datos, especialmente en países con ingresos medios y bajos, que cuentan con sistemas fragmentados de atención sanitaria. Los datos nacionales más recientes sobre vigilancia del dengue en Camboya se publicaron en 2010. Desde su publicación, el país experimentó cambios significativos en las políticas sanitarias, la demografía de la población, el clima y la urbanización. Aún no se sabe cómo afectaron dichos cambios al control del dengue. En el presente artículo, resumimos dos décadas de cambios políticos, de bibliografía publicada, de datos estadísticos a nivel nacional y datos sobre casos de dengue recopilados por el programa nacional de control de dengue en Camboya, con el fin de: (i) identificar cambios importantes en el escenario de la enfermedad; y (ii) extraer conclusiones para orientar futuras estrategias sobre vigilancia y control de la enfermedad. Informamos de que, aunque las tasas de morbilidad y mortalidad de los casos de dengue en Camboya descendieron entre 2002 y 2020, la incidencia del dengue se duplicó y la edad de infección aumentó. Las futuras políticas nacionales sobre vigilancia, prevención y tratamiento de la enfermedad y control de vectores deberán tener en cuenta estos cambios para optimizar el control de la enfermedad.
Assuntos
Aedes , Dengue , Animais , Humanos , Camboja/epidemiologia , Dengue/epidemiologia , Política de Saúde , Mosquitos Vetores , Vigilância de Evento SentinelaRESUMO
Introduction of non-pharmaceutical interventions to control COVID-19 in early 2020 coincided with a global decrease in active influenza circulation. However, between July and November 2020, an influenza A(H3N2) epidemic occurred in Cambodia and in other neighboring countries in the Greater Mekong Subregion in Southeast Asia. We characterized the genetic and antigenic evolution of A(H3N2) in Cambodia and found that the 2020 epidemic comprised genetically and antigenically similar viruses of Clade3C2a1b/131K/94N, but they were distinct from the WHO recommended influenza A(H3N2) vaccine virus components for 2020-2021 Northern Hemisphere season. Phylogenetic analysis revealed multiple virus migration events between Cambodia and bordering countries, with Laos PDR and Vietnam also reporting similar A(H3N2) epidemics immediately following the Cambodia outbreak: however, there was limited circulation of these viruses elsewhere globally. In February 2021, a virus from the Cambodian outbreak was recommended by WHO as the prototype virus for inclusion in the 2021-2022 Northern Hemisphere influenza vaccine. IMPORTANCE The 2019 coronavirus disease (COVID-19) pandemic has significantly altered the circulation patterns of respiratory diseases worldwide and disrupted continued surveillance in many countries. Introduction of control measures in early 2020 against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection has resulted in a remarkable reduction in the circulation of many respiratory diseases. Influenza activity has remained at historically low levels globally since March 2020, even when increased influenza testing was performed in some countries. Maintenance of the influenza surveillance system in Cambodia in 2020 allowed for the detection and response to an influenza A(H3N2) outbreak in late 2020, resulting in the inclusion of this virus in the 2021-2022 Northern Hemisphere influenza vaccine.
Assuntos
COVID-19/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/imunologia , Influenza Humana/complicações , Influenza Humana/imunologia , Camboja/epidemiologia , Surtos de Doenças , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Laos , Funções Verossimilhança , Filogenia , SARS-CoV-2 , VietnãRESUMO
BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a complex antibody response that varies by orders of magnitude between individuals and over time. METHODS: We developed a multiplex serological test for measuring antibodies to 5 SARS-CoV-2 antigens and the spike proteins of seasonal coronaviruses. We measured antibody responses in cohorts of hospitalized patients and healthcare workers followed for up to 11 months after symptoms. A mathematical model of antibody kinetics was used to quantify the duration of antibody responses. Antibody response data were used to train algorithms for estimating time since infection. RESULTS: One year after symptoms, we estimate that 36% (95% range, 11%-94%) of anti-Spike immunoglobulin G (IgG) remains, 31% (95% range, 9%-89%) anti-RBD IgG remains, and 7% (1%-31%) of anti-nucleocapsid IgG remains. The multiplex assay classified previous infections into time intervals of 0-3 months, 3-6 months, and 6-12 months. This method was validated using data from a seroprevalence survey in France, demonstrating that historical SARS-CoV-2 transmission can be reconstructed using samples from a single survey. CONCLUSIONS: In addition to diagnosing previous SARS-CoV-2 infection, multiplex serological assays can estimate the time since infection, which can be used to reconstruct past epidemics.
Assuntos
Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/imunologia , Testes Sorológicos/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Formação de Anticorpos , Especificidade de Anticorpos , COVID-19/epidemiologia , Feminino , França/epidemiologia , Humanos , Imunoglobulina G/sangue , Cinética , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Adulto JovemRESUMO
Despite estimates that, each year, as many as 300 million dengue virus (DENV) infections result in either no perceptible symptoms (asymptomatic) or symptoms that are sufficiently mild to go undetected by surveillance systems (inapparent), it has been assumed that these infections contribute little to onward transmission. However, recent blood-feeding experiments with Aedes aegypti mosquitoes showed that people with asymptomatic and pre-symptomatic DENV infections are capable of infecting mosquitoes. To place those findings into context, we used models of within-host viral dynamics and human demographic projections to (1) quantify the net infectiousness of individuals across the spectrum of DENV infection severity and (2) estimate the fraction of transmission attributable to people with different severities of disease. Our results indicate that net infectiousness of people with asymptomatic infections is 80% (median) that of people with apparent or inapparent symptomatic infections (95% credible interval (CI): 0-146%). Due to their numerical prominence in the infectious reservoir, clinically inapparent infections in total could account for 84% (CI: 82-86%) of DENV transmission. Of infections that ultimately result in any level of symptoms, we estimate that 24% (95% CI: 0-79%) of onward transmission results from mosquitoes biting individuals during the pre-symptomatic phase of their infection. Only 1% (95% CI: 0.8-1.1%) of DENV transmission is attributable to people with clinically detected infections after they have developed symptoms. These findings emphasize the need to (1) reorient current practices for outbreak response to adoption of pre-emptive strategies that account for contributions of undetected infections and (2) apply methodologies that account for undetected infections in surveillance programs, when assessing intervention impact, and when modeling mosquito-borne virus transmission.
Assuntos
Dengue/transmissão , Aedes/virologia , Animais , Dengue/diagnóstico , Dengue/virologia , Vírus da Dengue/patogenicidade , Reservatórios de Doenças/virologia , Interações Hospedeiro-Patógeno , Humanos , Modelos Biológicos , Mosquitos Vetores/virologia , Viremia/diagnóstico , Viremia/transmissão , Viremia/virologiaRESUMO
OBJECTIVE: To better understand the potential risks of Nipah virus emergence in Cambodia by studying different components of the interface between humans and bats. METHODS: From 2012 to 2016, we conducted a study at two sites in Kandal and Battambang provinces where fruit bats (Pteropus lylei) roost. We combined research on: bat ecology (reproductive phenology, population dynamics and diet); human practices and perceptions (ethnographic research and a knowledge, attitude and practice study); and Nipah virus circulation in bat and human populations (virus monitoring in bat urine and anti-Nipah-virus antibody detection in human serum). FINDINGS: Our results confirmed circulation of Nipah virus in fruit bats (28 of 3930 urine samples positive by polymerase chain reaction testing). We identified clear potential routes for virus transmission to humans through local practices, including fruit consumed by bats and harvested by humans when Nipah virus is circulating, and palm juice production. Nevertheless, in the serological survey of 418 potentially exposed people, none of them were seropositive to Nipah virus. Differences in agricultural practices among the regions where Nipah virus has emerged may explain the situation in Cambodia and point to actions to limit the risks of virus transmission to humans. CONCLUSION: Human practices are key to understanding transmission risks associated with emerging infectious diseases. Social science disciplines such as anthropology need to be integrated in health programmes targeting emerging infectious diseases. As bats are hosts of major zoonotic pathogens, such integrated studies would likely also help to reduce the risk of emergence of other bat-borne diseases.
Assuntos
Quirópteros/virologia , Infecções por Henipavirus/psicologia , Infecções por Henipavirus/transmissão , Vírus Nipah/isolamento & purificação , Animais , Antropologia Cultural , Anticorpos Antivirais , Camboja/epidemiologia , Feminino , Frutas , Conhecimentos, Atitudes e Prática em Saúde , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/urina , Humanos , Masculino , Vírus Nipah/imunologia , Fatores de Risco , Zoonoses/virologiaRESUMO
Coronaviruses can become zoonotic, as in the case of COVID-19, and hunting, sale, and consumption of wild animals in Southeast Asia increases the risk for such incidents. We sampled and tested rodents (851) and other mammals and found betacoronavirus RNA in 12 rodents. The sequences belong to two separate genetic clusters and are closely related to those of known rodent coronaviruses detected in the region and distantly related to those of human coronaviruses OC43 and HKU1. Considering the close human-wildlife contact with many species in and beyond the region, a better understanding of virus diversity is urgently needed for the mitigation of future risks.
Assuntos
Animais Selvagens/virologia , Betacoronavirus/genética , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Pneumonia Viral/veterinária , RNA Viral/genética , Roedores/virologia , Animais , Betacoronavirus/isolamento & purificação , COVID-19 , Quirópteros/virologia , Coronavirus Humano OC43/genética , Humanos , Laos/epidemiologia , RNA Viral/isolamento & purificação , SARS-CoV-2RESUMO
In Cambodia, dengue outbreaks occur each rainy season (May-October) but vary in magnitude. Using national surveillance data, we designed a tool that can predict 90% of the variance in peak magnitude by April, when typically <10% of dengue cases have been reported. This prediction may help hospitals anticipate excess patients.
Assuntos
Dengue/epidemiologia , Surtos de Doenças , Camboja/epidemiologia , Dengue/virologia , Vírus da Dengue/classificação , Humanos , Vigilância da População , Estações do Ano , SorogrupoRESUMO
We investigated dengue virus (DENV) and asymptomatic DENV infections in rural villages of Kampong Cham Province, Cambodia, during 2012 and 2013. We conducted perifocal investigations in and around households for 149 DENV index cases identified through hospital and village surveillance. We tested participants 0.5-30 years of age by using nonstructural 1 rapid tests and confirmed DENV infections using quantitative reverse transcription PCR or nonstructural 1-capture ELISA. We used multivariable Poisson regressions to explore links between participants' DENV infection status and household characteristics. Of 7,960 study participants, 346 (4.4%) were infected with DENV, among whom 302 (87.3%) were <15 years of age and 225 (65.0%) were <9 years of age. We identified 26 (7.5%) participants with strictly asymptomatic DENV infection at diagnosis and during follow-up. We linked symptomatic DENV infection status to familial relationships with index cases. During the 2-year study, we saw fewer asymptomatic DENV infections than expected based on the literature.
Assuntos
Doenças Assintomáticas/epidemiologia , Vírus da Dengue , Dengue/epidemiologia , Dengue/virologia , Adolescente , Adulto , Fatores Etários , Camboja/epidemiologia , Criança , Pré-Escolar , Dengue/diagnóstico , Dengue/história , Surtos de Doenças , Feminino , História do Século XXI , Humanos , Masculino , Programas de Rastreamento , Vigilância em Saúde Pública , Vigilância de Evento Sentinela , Adulto JovemRESUMO
A mass mortality event involving Chaerephon plicatus and Taphozous theobaldi bats occurred during a heat wave in April 2016 in Cambodia. This was investigated to clarify the causes of the die-off and assess the risk to public health. Field evidences, clinical signs, and gross pathology findings were consistent with a heat stress hypothesis. However, the detection of a novel bat paramyxovirus raises questions about its role as a contributing factor or a coincidental finding. Systematic documentation of bat die-offs related to extreme weather events is necessary to improve understanding of the effect of changing weather patterns on bat populations and the ecosystem services they provide.
RESUMO
Background: Early detection of severe dengue can improve patient care and survival. To date, no reliable single-gene biomarker exists. We hypothesized that robust multigene signatures exist. Methods: We performed a prospective study on Cambodian dengue patients aged 4 to 22 years. Peripheral blood mononuclear cells (PBMCs) were obtained at hospital admission. We analyzed 42 transcriptomic profiles of patients with secondary dengue infected with dengue serotype 1. Our novel signature discovery approach controls the number of included genes and captures nonlinear relationships between transcript concentrations and severity. We evaluated the signature on secondary cases infected with different serotypes using 2 datasets: 22 PBMC samples from additional patients in our cohort and 32 whole blood samples from an independent cohort. Results: We identified an 18-gene signature for detecting severe dengue in patients with secondary infection upon hospital admission with a sensitivity of 0.93 (95% confidence interval [CI], .82-.98), specificity of 0.67 (95% CI, .53-.80), and area under the receiver operating characteristic curve (AUC) of 0.86 (95% CI, .75-.97). At validation, the signature had empirical AUCs of 0.85 (95% CI, .69-1.00) and 0.83 (95% CI, .68-.98) for the PBMCs and whole blood datasets, respectively. Conclusions: The signature could detect severe dengue in secondary-infected patients upon hospital admission. Its genes offer new insights into the pathogenesis of severe dengue.
Assuntos
RNA/sangue , Dengue Grave/sangue , Dengue Grave/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Coinfecção/sangue , Coinfecção/diagnóstico , Coinfecção/virologia , Vírus da Dengue/genética , Feminino , Marcadores Genéticos/genética , Hospitalização , Hospitais , Humanos , Leucócitos Mononucleares/virologia , Masculino , Estudos Prospectivos , Curva ROC , Sensibilidade e Especificidade , Sorogrupo , Transcriptoma/genética , Adulto JovemRESUMO
Three-quarters of the estimated 390 million dengue virus (DENV) infections each year are clinically inapparent. People with inapparent dengue virus infections are generally considered dead-end hosts for transmission because they do not reach sufficiently high viremia levels to infect mosquitoes. Here, we show that, despite their lower average level of viremia, asymptomatic people can be infectious to mosquitoes. Moreover, at a given level of viremia, DENV-infected people with no detectable symptoms or before the onset of symptoms are significantly more infectious to mosquitoes than people with symptomatic infections. Because DENV viremic people without clinical symptoms may be exposed to more mosquitoes through their undisrupted daily routines than sick people and represent the bulk of DENV infections, our data indicate that they have the potential to contribute significantly more to virus transmission to mosquitoes than previously recognized.
Assuntos
Vírus da Dengue/fisiologia , Dengue/transmissão , Dengue/virologia , Adolescente , Aedes/virologia , Animais , Criança , Dengue/sangue , Relação Dose-Resposta Imunológica , Feminino , Humanos , Masculino , Análise Multivariada , Análise de Regressão , Viremia/sangue , Viremia/virologiaRESUMO
We describe a retrospective study on circulation of Zika virus in Cambodia during 2007-2016 among patients with dengue-like symptoms and Aedes aegypti mosquitoes. Our findings suggest that Zika virus in Cambodia belongs to the Asia genotype, is endemic, has low prevalence, and has had low-level impact on public health.
Assuntos
Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia , Zika virus , Aedes/virologia , Animais , Camboja/epidemiologia , Genótipo , Geografia Médica , Humanos , Insetos Vetores/virologia , Filogenia , Vigilância da População , Prevalência , Estudos Retrospectivos , Proteínas não Estruturais Virais/genética , Zika virus/classificação , Zika virus/genética , Infecção por Zika virus/transmissãoRESUMO
Japanese encephalitis remains the most important cause of viral encephalitis in humans in several southeast Asian countries, including Cambodia, causing at least 65â000 cases of encephalitis per year. This vector-borne viral zoonosis - caused by Japanese encephalitis virus (JEV) - is considered to be a rural disease and is transmitted by mosquitoes, with birds and pigs being the natural reservoirs, while humans are accidental hosts. In this study we report the first two JEV isolations in Cambodia from human encephalitis cases from two studies on the aetiology of central nervous system disease, conducted at the two major paediatric hospitals in the country. We also report JEV isolation from Culextritaeniorhynchus mosquitoes and from pig samples collected in two farms, located in peri-urban and rural areas. Out of 11 reverse-transcription polymerase chain reaction-positive original samples, we generated full-genome sequences from 5 JEV isolates. Five additional partial sequences of the JEV NS3 gene from viruses detected in five pigs and one complete coding sequence of the envelope gene of a strain identified in a pig were generated. Phylogenetic analyses revealed that JEV detected in Cambodia belonged to genotype I and clustered in two clades: genotype I-a, mainly comprising strains from Thailand, and genotype I-b, comprising strains from Vietnam that dispersed northwards to China. Finally, in this study, we provide proof that the sequenced JEV strains circulate between pigs, Culex tritaeniorhynchus and humans in the Phnom Penh vicinity.
Assuntos
Culicidae/virologia , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Encefalite Japonesa/veterinária , Encefalite Japonesa/virologia , Genoma Viral , Doenças dos Suínos/virologia , Animais , Camboja , Criança , Pré-Escolar , Estudos de Coortes , Vírus da Encefalite Japonesa (Espécie)/classificação , Vírus da Encefalite Japonesa (Espécie)/genética , Feminino , Genótipo , Humanos , Lactente , Masculino , Filogenia , SuínosRESUMO
Enterovirus 71 is reported to have emerged in Cambodia in 2012; at least 54 children with severe encephalitis died during that outbreak. We used serum samples collected during 2000-2011 to show that the virus had been widespread in the country for at least a decade before the 2012 outbreak.