Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 402(1): 3-16, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25794678

RESUMO

Neural crest cells (NCC) comprise a multipotent, migratory stem cell and progenitor population that gives rise to numerous cell and tissue types within a developing embryo, including craniofacial bone and cartilage, neurons and glia of the peripheral nervous system, and melanocytes within the skin. Here we describe two novel stable transgenic mouse lines suitable for lineage tracing and analysis of gene function in NCC. Firstly, using the F10N enhancer of the Mef2c gene (Mef2c-F10N) linked to LacZ, we generated transgenic mice (Mef2c-F10N-LacZ) that express LacZ in the majority, if not all migrating NCC that delaminate from the neural tube. Mef2c-F10N-LacZ then continues to be expressed primarily in neurogenic, gliogenic and melanocytic NCC and their derivatives, but not in ectomesenchymal derivatives. Secondly, we used the same Mef2c-F10N enhancer together with Cre recombinase to generate transgenic mice (Mef2c-F10N-Cre) that can be used to indelibly label, or alter gene function in, migrating NCC and their derivatives. At early stages of development, Mef2c-F10N-LacZ and Mef2c-F10N-Cre label NCC in a pattern similar to Wnt1-Cre mice, with the exception that Mef2c-F10N-LacZ and Mef2c-F10N-Cre specifically label NCC that have delaminated from the neural plate, while premigratory NCC are not labeled. Thus, our Mef2c-F10N-LacZ and Mef2c-F10N-Cre transgenic mice provide new resources for tracing migratory NCC and analyzing gene function in migrating and differentiating NCC independently of NCC formation.


Assuntos
Elementos Facilitadores Genéticos , Integrases/genética , Óperon Lac , Camundongos Transgênicos , Crista Neural/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Galinhas , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Integrases/metabolismo , Melanócitos/citologia , Mesoderma/metabolismo , Camundongos , Crista Neural/metabolismo , Neurônios/metabolismo , Coelhos , Ratos , Xenopus , Peixe-Zebra
2.
Sci Adv ; 9(42): eadi1562, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862414

RESUMO

In almost all sexually reproducing organisms, meiotic recombination and cell division require the synapsis of homologous chromosomes by a large proteinaceous structure, the synaptonemal complex (SC). While the SC's overall structure is highly conserved across eukaryotes, its constituent proteins diverge between phyla. Transverse filament protein, SYCP1, spans the width of the SC and undergoes amino-terminal head-to-head self-assembly in vitro through a motif that is unusually highly conserved across kingdoms of life. Here, we report creation of mouse mutants, Sycp1L102E and Sycp1L106E, that target SYCP1's head-to-head interface. L106E resulted in a complete loss of synapsis, while L102E had no apparent effect on synapsis, in agreement with their differential effects on the SYCP1 head-to-head interface in molecular dynamics simulations. In Sycp1L106E mice, homologs aligned and recruited low levels of mutant SYCP1 and other SC proteins, but the absence of synapsis led to failure of crossover formation and meiotic arrest. We conclude that SYCP1's conserved head-to-head interface is essential for meiotic chromosome synapsis in vivo.


Assuntos
Pareamento Cromossômico , Proteínas Nucleares , Animais , Camundongos , Recombinação Homóloga , Meiose/genética , Proteínas Nucleares/metabolismo , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
3.
J Neurosci ; 30(22): 7473-83, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20519522

RESUMO

In mammalian species, detection of pheromone cues by the vomeronasal organ (VNO) at different concentrations can elicit distinct behavioral responses and endocrine changes. It is not well understood how concentration-dependent activation of the VNO impacts innate behaviors. In this study, we find that, when mice investigate the urogenital areas of a conspecific animal, the urinary pheromones can reach the VNO at a concentration of approximately 1% of that in urine. At this level, urinary pheromones elicit responses from a subset of cells that are tuned to sex-specific cues and provide unambiguous identification of the sex and strain of animals. In contrast, low concentrations of urine do not activate these cells. Strikingly, we find a population of neurons that is only activated by low concentrations of urine. The properties of these neurons are not found in neurons responding to putative single-compound pheromones. Additional analyses show that these neurons are masked by high-concentration pheromones. Thus, an antagonistic interaction in natural pheromones results in the activation of distinct populations of cells at different concentrations. The differential activation is likely to trigger different downstream circuitry and underlies the concentration-dependent pheromone perception.


Assuntos
Sinais (Psicologia) , Neurônios/fisiologia , Feromônios/urina , Órgão Vomeronasal/citologia , Órgão Vomeronasal/fisiologia , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Relação Dose-Resposta a Droga , Potenciais Evocados/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Lectinas/genética , Lectinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/classificação , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Feromônios/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Órgão Vomeronasal/efeitos dos fármacos
4.
Cell Rep ; 34(2): 108603, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440163

RESUMO

Anterior segment dysgenesis is often associated with cornea diseases, cataracts, and glaucoma. In the anterior segment, the ciliary body (CB) containing inner and outer ciliary epithelia (ICE and OCE) secretes aqueous humor that maintains intraocular pressure (IOP). However, CB development and function remain poorly understood. Here, this study shows that NOTCH signaling in the CB maintains the vitreous, IOP, and eye structures by regulating CB morphogenesis, aqueous humor secretion, and vitreous protein expression. Notch2 and Notch3 function via RBPJ in the CB to control ICE-OCE adhesion, CB morphogenesis, aqueous humor secretion, and protein expression, thus maintaining IOP and eye structures. Mechanistically, NOTCH signaling transcriptionally controls Nectin1 expression in the OCE to promote cell adhesion for driving CB morphogenesis and to directly stabilize Cx43 for controlling aqueous humor secretion. Finally, NOTCH signaling directly controls vitreous protein secretion in the ICE. Therefore, this study provides important insight into CB functions and involvement in eye diseases.


Assuntos
Corpo Ciliar/metabolismo , Nectinas/metabolismo , Receptor Notch2/metabolismo , Receptor Notch3/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Transdução de Sinais
5.
J Cell Biol ; 197(2): 239-51, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22492726

RESUMO

The Arp2/3 complex nucleates the formation of the dendritic actin network at the leading edge of motile cells, but it is still unclear if the Arp2/3 complex plays a critical role in lamellipodia protrusion and cell motility. Here, we differentiated motile fibroblast cells from isogenic mouse embryonic stem cells with or without disruption of the ARPC3 gene, which encodes the p21 subunit of the Arp2/3 complex. ARPC3(-/-) fibroblasts were unable to extend lamellipodia but generated dynamic leading edges composed primarily of filopodia-like protrusions, with formin proteins (mDia1 and mDia2) concentrated near their tips. The speed of cell migration, as well as the rates of leading edge protrusion and retraction, were comparable between genotypes; however, ARPC3(-/-) cells exhibited a strong defect in persistent directional migration. This deficiency correlated with a lack of coordination of the protrusive activities at the leading edge of ARPC3(-/-) fibroblasts. These results provide insights into the Arp2/3 complex's critical role in lamellipodia extension and directional fibroblast migration.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Movimento Celular , Fibroblastos/fisiologia , Pseudópodes/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Animais , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Feminino , Fibroblastos/ultraestrutura , Técnicas de Inativação de Genes , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cicatrização/genética , Cicatrização/fisiologia
6.
Development ; 135(4): 729-41, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18223201

RESUMO

Neurogenesis requires the coordination of neural progenitor proliferation and differentiation with cell-cycle regulation. However, the mechanisms coordinating these distinct cellular activities are poorly understood. Here we demonstrate for the first time that a Cut-like homeodomain transcription factor family member, Cux2 (Cutl2), regulates cell-cycle progression and development of neural progenitors. Cux2 loss-of-function mouse mutants exhibit smaller spinal cords with deficits in neural progenitor development as well as in neuroblast and interneuron differentiation. These defects correlate with reduced cell-cycle progression of neural progenitors coupled with diminished Neurod and p27(Kip1) activity. Conversely, in Cux2 gain-of-function transgenic mice, the spinal cord is enlarged in association with enhanced neuroblast formation and neuronal differentiation, particularly with respect to interneurons. Furthermore, Cux2 overexpression induces high levels of Neurod and p27(Kip1). Mechanistically, we discovered through chromatin immunoprecipitation assays that Cux2 binds both the Neurod and p27(Kip1) promoters in vivo, indicating that these interactions are direct. Our results therefore show that Cux2 functions at multiple levels during spinal cord neurogenesis. Cux2 initially influences cell-cycle progression in neural progenitors but subsequently makes additional inputs through Neurod and p27(Kip1) to regulate neuroblast formation, cell-cycle exit and cell-fate determination. Thus our work defines novel roles for Cux2 as a transcription factor that integrates cell-cycle progression with neural progenitor development during spinal cord neurogenesis.


Assuntos
Ciclo Celular , Diferenciação Celular , Proteínas de Homeodomínio/metabolismo , Neurônios/citologia , Medula Espinal/citologia , Células-Tronco/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal , Galinhas , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Embrião de Mamíferos/citologia , Interneurônios/citologia , Interneurônios/metabolismo , Camundongos , Mitose , Modelos Neurológicos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação/genética , Tubo Neural/anormalidades , Regiões Promotoras Genéticas/genética , Transporte Proteico , Medula Espinal/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA