Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Immunity ; 51(5): 899-914.e7, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31732166

RESUMO

Myocardial infarction, stroke, and sepsis trigger systemic inflammation and organism-wide complications that are difficult to manage. Here, we examined the contribution of macrophages residing in vital organs to the systemic response after these injuries. We generated a comprehensive catalog of changes in macrophage number, origin, and gene expression in the heart, brain, liver, kidney, and lung of mice with myocardial infarction, stroke, or sepsis. Predominantly fueled by heightened local proliferation, tissue macrophage numbers increased systemically. Macrophages in the same organ responded similarly to different injuries by altering expression of tissue-specific gene sets. Preceding myocardial infarction improved survival of subsequent pneumonia due to enhanced bacterial clearance, which was caused by IFNÉ£ priming of alveolar macrophages. Conversely, EGF receptor signaling in macrophages exacerbated inflammatory lung injury. Our data suggest that local injury activates macrophages in remote organs and that targeting macrophages could improve resilience against systemic complications following myocardial infarction, stroke, and sepsis.


Assuntos
Suscetibilidade a Doenças , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Biomarcadores , Contagem de Células , Suscetibilidade a Doenças/imunologia , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Isquemia/etiologia , Isquemia/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Células Musculares/imunologia , Células Musculares/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia
2.
Immunity ; 49(1): 93-106.e7, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958804

RESUMO

There is a growing body of research on the neural control of immunity and inflammation. However, it is not known whether the nervous system can regulate the production of inflammatory myeloid cells from hematopoietic progenitor cells in disease conditions. Myeloid cell numbers in diabetic patients were strongly correlated with plasma concentrations of norepinephrine, suggesting the role of sympathetic neuronal activation in myeloid cell production. The spleens of diabetic patients and mice contained higher numbers of tyrosine hydroxylase (TH)-expressing leukocytes that produced catecholamines. Granulocyte macrophage progenitors (GMPs) expressed the ß2 adrenergic receptor, a target of catecholamines. Ablation of splenic sympathetic neuronal signaling using surgical, chemical, and genetic approaches diminished GMP proliferation and myeloid cell development. Finally, mice lacking TH-producing leukocytes had reduced GMP proliferation, resulting in diminished myelopoiesis. Taken together, our study demonstrates that catecholamines produced by leukocytes and sympathetic nerve termini promote GMP proliferation and myeloid cell development.


Assuntos
Diabetes Mellitus/fisiopatologia , Células Progenitoras de Granulócitos e Macrófagos/citologia , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Mielopoese , Neuroimunomodulação , Sistema Nervoso Simpático/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus/sangue , Modelos Animais de Doenças , Feminino , Humanos , Leucócitos/enzimologia , Leucócitos/metabolismo , Masculino , Camundongos , Células Mieloides/citologia , Mielopoese/efeitos dos fármacos , Neuroimunomodulação/efeitos dos fármacos , Norepinefrina/sangue , Transdução de Sinais/efeitos dos fármacos , Baço/citologia , Baço/inervação , Baço/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos
3.
J Immunol ; 210(9): 1363-1371, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36946774

RESUMO

Insulin resistance is a compromised response to insulin in target tissues such as liver. Emerging evidence shows that vascular endothelial cells (ECs) are critical in mediating glucose metabolism. However, how liver ECs can regulate inflammation in the setting of insulin resistance is still unknown. Using genome-wide transcriptome analysis of ECs isolated from diabetic mice, we found enrichment of the genes involved in epidermal growth factor receptor (Egfr) signaling. In line with this, hepatic sinusoidal ECs in diabetic mice had elevated levels of Egfr expression. Interestingly, we found an increased number of hepatic myeloid cells, especially macrophages, and systemic glucose intolerance in Cdh5Cre/+Egfrfl/fl mice lacking Egfr in ECs compared with littermate control mice with type II diabetes. Egfr deficiency upregulated the expression of MCP-1 in hepatic sinusoidal ECs. This resulted in augmented monocyte recruitment and macrophage differentiation in Cdh5Cre/+Egfrfl/fl mice compared with littermate control mice as determined by a mouse model of parabiosis. Finally, MCP-1 neutralization and hepatic macrophage depletion in Cdh5Cre/+Egfrfl/fl mice resulted in a reduced number of hepatic macrophages and ameliorated glucose intolerance compared with the control groups. Collectively, these results demonstrate a protective endothelial Egfr signaling in reducing monocyte-mediated hepatic inflammation and glucose intolerance in type II diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , Camundongos , Animais , Monócitos/metabolismo , Intolerância à Glucose/metabolismo , Células Endoteliais/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Receptores ErbB/metabolismo , Camundongos Endogâmicos C57BL
4.
Langmuir ; 40(15): 8094-8107, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567885

RESUMO

Fog harvesting relies on intercepting atmospheric or industrial fog by placing a porous obstacle, for example, a mesh and collecting the deposited water. In the face of global water scarcity, such fog harvesting has emerged as a viable alternative source of potable water. Typical fog harvesting meshes suffer from poor collection efficiency due to aerodynamic bypassing of the oncoming fog stream and poor collection of the deposited water from the mesh. One pestering challenge in this context is the frequent clogging up of mesh pores by the deposited fog water, which not only yields low drainage efficiency but also generates high aerodynamic resistance to the oncoming fog stream, thereby negatively impacting the fog collection efficiency. Minimizing the clogging is possible by rendering the mesh fibers superhydrophobic, but that entails other detrimental effects like premature dripping and flow-induced re-entrainment of water droplets into the fog stream from the mesh fiber. Herein, we improvise on traditional interweaved metal mesh designs by defining critical parameters, viz., mesh pitch, shade coefficient, and fiber wettability, and deducing their optimal values from numerically and experimentally observed morphology of collected fog water droplets under various operating scenarios. We extend our investigations over a varying range of mesh-wettability, including superhydrophilic and hydrophobic fibers, and go on to find optimal shade coefficients which would theoretically render clog-proof fog harvesting meshes. The aerodynamic, deposition, and overall collection efficiencies are characterized. Hydrophobic meshes with square pores, having fiber diameters smaller than the capillary length scale of water, and an optimal shade coefficient are found to be the most effective design of such clog-proof meshes.

5.
Arterioscler Thromb Vasc Biol ; 43(6): 889-906, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891902

RESUMO

BACKGROUND: Peripheral ischemia caused by peripheral artery disease is associated with systemic inflammation, which may aggravate underlying comorbidities such as atherosclerosis and heart failure. However, the mechanisms of increased inflammation and inflammatory cell production in patients with peripheral artery disease remain poorly understood. METHODS: We used peripheral blood collected from patients with peripheral artery disease and performed hind limb ischemia (HI) in Apoe-/- mice fed a Western diet and C57BL/6J mice with a standard laboratory diet. Bulk and single-cell RNA sequencing analysis, whole-mount microscopy, and flow cytometry were performed to analyze hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and relocation. RESULTS: We observed augmented numbers of leukocytes in the blood of patients with peripheral artery disease and Apoe-/- mice with HI. RNA sequencing and whole-mount imaging of the bone marrow revealed HSPC migration into the vascular niche from the osteoblastic niche and their exaggerated proliferation and differentiation. Single-cell RNA sequencing demonstrated alterations in the genes responsible for inflammation, myeloid cell mobilization, and HSPC differentiation after HI. Heightened inflammation in Apoe-/- mice after HI aggravated atherosclerosis. Surprisingly, bone marrow HSPCs expressed higher amounts of the receptors for IL (interleukin)-1 and IL-3 after HI. Concomitantly, the promoters of Il1r1 and Il3rb had augmented H3K4me3 and H3K27ac marks after HI. Genetic and pharmacological inhibition of these receptors resulted in suppressed HSPC proliferation, reduced leukocyte production, and ameliorated atherosclerosis. CONCLUSIONS: Our findings demonstrate increased inflammation, HSPC abundance in the vascular niches of the bone marrow, and elevated IL-3Rb and IL-1R1 (IL-1 receptor 1) expression in HSPC following HI. Furthermore, the IL-3Rb and IL-1R1 signaling plays a pivotal role in HSPC proliferation, leukocyte abundance, and atherosclerosis aggravation after HI.


Assuntos
Aterosclerose , Doença Arterial Periférica , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas/metabolismo , Aterosclerose/metabolismo , Inflamação/metabolismo , Isquemia/genética , Isquemia/metabolismo , Doença Arterial Periférica/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Epigênese Genética
6.
Chem Biodivers ; 21(6): e202400331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578839

RESUMO

Euphorbia antiquorum L. is a small plant in the Euphorbiaceae family that is found primarily in tropical and subtropical Asia. It has a long tradition of being utilized in Chinese, Ayurvedic, and other traditional systems for a variety of ailments. To date, More than 116 bioactive constituents were isolated from Euphorbia antiquorum, with diterpenoids being the most abundant. Extracts and isolated chemicals from various portions of the plant have demonstrated significant pharmacological activities such as anti-inflammatory, analgesic, antidiabetic, anticancer etc. It is necessary to conduct an in-depth investigation of the phytochemicals along with the pharmacological properties of E. antiquorum. This review summarised the knowledge of ethnobotany, phytochemistry and pharmacological activities of the plant which will provide a better understanding to clarify the traditional uses of the species and its relation to modern pharmacology which will ultimately pave the way for its clinical application.


Assuntos
Etnobotânica , Euphorbia , Compostos Fitoquímicos , Euphorbia/química , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação
7.
J Physiol ; 601(11): 2099-2120, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35661362

RESUMO

Visceral adipose tissue (VAT) is a metabolic organ known to regulate fat mass, and glucose and nutrient homeostasis. VAT is an active endocrine gland that synthesizes and secretes numerous bioactive mediators called 'adipocytokines/adipokines' into systemic circulation. These adipocytokines act on organs of metabolic importance like the liver and skeletal muscle. Multiple preclinical and in vitro studies showed strong evidence of the roles of adipocytokines in the regulation of metabolic disorders like diabetes, obesity and insulin resistance. Adipocytokines, such as adiponectin and omentin, are anti-inflammatory and have been shown to prevent atherogenesis by increasing nitric oxide (NO) production by the endothelium, suppressing endothelium-derived inflammation and decreasing foam cell formation. By inhibiting differentiation of vascular smooth muscle cells (VSMC) into osteoblasts, adiponectin and omentin prevent vascular calcification. On the other hand, adipocytokines like leptin and resistin induce inflammation and endothelial dysfunction that leads to vasoconstriction. By promoting VSMC migration and proliferation, extracellular matrix degradation and inflammatory polarization of macrophages, leptin and resistin increase the risk of atherosclerotic plaque vulnerability and rupture. Additionally, the plasma concentrations of these adipocytokines alter in ageing, rendering older humans vulnerable to cardiovascular disease. The disturbances in the normal physiological concentrations of these adipocytokines secreted by VAT under pathological conditions impede the normal functions of various organs and affect cardiovascular health. These adipokines could be used for both diagnostic and therapeutic purposes in cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Leptina , Humanos , Resistina/metabolismo , Adiponectina/metabolismo , Doenças Cardiovasculares/metabolismo , Gordura Intra-Abdominal/metabolismo , Adipocinas/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo
8.
J Theor Biol ; 567: 111494, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37075828

RESUMO

The threat of large-scale pollinator decline is increasing globally under stress from multiple anthropogenic pressures. Traditional approaches have focused on managing endangered species at an individual level, in which the effect of complex interactions such as mutualism and competition are amiss. Here, we develop a coupled socio-mutualistic network model that captures the change in pollinator dynamics with human conservation opinion in a deteriorating environment. We show that the application of social norm (or conservation) at the pollinator nodes is fit to prevent sudden community collapse in representative networks of varied topology. Whilst primitive strategies have focused on regulating abundance as a mitigation strategy, the role of network structure has been largely overlooked. Here, we develop a novel network structure-mediated conservation strategy to find the optimal set of nodes on which norm implementation successfully prevents community collapse. We find that networks of intermediate nestedness require conservation at a minimum number of nodes to prevent a community collapse. We claim the robustness of the optimal conservation strategy (OCS) after validation on several simulated and empirical networks of varied complexity against a broad range of system parameters. Dynamical analysis of the reduced model shows that incorporating social norms allows the pollinator abundance to grow that would have otherwise crossed a tipping point and undergo extinction. Together, this novel means OCS provides a potential plan of action for conserving plant-pollinator networks bridging the gap between research in mutualistic networks and conservation ecology.


Assuntos
Polinização , Simbiose , Animais , Humanos , Polinização/fisiologia , Simbiose/fisiologia , Ecologia , Espécies em Perigo de Extinção , Plantas , Ecossistema
9.
Chaos ; 33(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276552

RESUMO

Stochasticity or noise is omnipresent in ecosystems that mediates community dynamics. The beneficial role of stochasticity in enhancing species coexistence and, hence, in promoting biodiversity is well recognized. However, incorporating stochastic birth and death processes in excitable slow-fast ecological systems to study its response to biodiversity is largely unexplored. Considering an ecological network of excitable consumer-resource systems, we study the interplay of network structure and noise on species' collective dynamics. We find that noise drives the system out of the excitable regime, and high habitat patch connectance in the ordered as well as random networks promotes species' diversity by inducing new steady states via noise-induced symmetry breaking.


Assuntos
Biodiversidade , Ecossistema , Ruído
10.
Chaos ; 33(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874880

RESUMO

Birhythmicity is evident in many nonlinear systems, which include physical and biological systems. In some living systems, birhythmicity is necessary for response to the varying environment while unnecessary in some physical systems as it limits their efficiency. Therefore, its control is an important area of research. This paper proposes a space-dependent intermittent control scheme capable of controlling birhythmicity in various dynamical systems. We apply the proposed control scheme in five nonlinear systems from diverse branches of natural science and demonstrate that the scheme is efficient enough to control the birhythmic oscillations in all the systems. We derive the analytical condition for controlling birhythmicity by applying harmonic decomposition and energy balance methods in a birhythmic van der Pol oscillator. Further, the efficacy of the control scheme is investigated through numerical and bifurcation analyses in a wide parameter space. Since the proposed control scheme is general and efficient, it may be employed to control birhythmicity in several dynamical systems.

11.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904729

RESUMO

Using distributed MEMS pressure sensors to measure small flow rates in high resistance fluidic channels is fraught with challenges far beyond the performance of the pressure sensing element. In a typical core-flood experiment, which may last several months, flow-induced pressure gradients are generated in porous rock core samples wrapped in a polymer sheath. Measuring these pressure gradients along the flow path requires high resolution pressure measurement while contending with difficult test conditions such as large bias pressures (up to 20 bar) and temperatures (up to 125 °C), as well as the presence of corrosive fluids. This work is directed at a system for using passive wireless inductive-capacitive (LC) pressure sensors that are distributed along the flow path to measure the pressure gradient. The sensors are wirelessly interrogated with readout electronics placed exterior to the polymer sheath for continuous monitoring of experiments. Using microfabricated pressure sensors that are smaller than ø15 × 3.0 mm3, an LC sensor design model for minimizing pressure resolution, accounting for sensor packaging and environmental artifacts is investigated and experimentally validated. A test setup, built to provide fluid-flow pressure differentials to LC sensors with conditions that mimic placement of the sensors within the wall of the sheath, is used to test the system. Experimental results show the microsystem operating over full-scale pressure range of 20,700 mbar and temperatures up to 125 °C, while achieving pressure resolution of <1 mbar, and resolving gradients of 10-30 mL/min, which are typical in core-flood experiments.

12.
Circ Res ; 127(5): 677-692, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32493166

RESUMO

RATIONALE: Unproven theories abound regarding the long-range uptake and endocrine activity of extracellular blood-borne microRNAs into tissue. In pulmonary hypertension (PH), microRNA-210 (miR-210) in pulmonary endothelial cells promotes disease, but its activity as an extracellular molecule is incompletely defined. OBJECTIVE: We investigated whether chronic and endogenous endocrine delivery of extracellular miR-210 to pulmonary vascular endothelial cells promotes PH. METHODS AND RESULTS: Using miR-210 replete (wild-type [WT]) and knockout mice, we tracked blood-borne miR-210 using bone marrow transplantation and parabiosis (conjoining of circulatory systems). With bone marrow transplantation, circulating miR-210 was derived predominantly from bone marrow. Via parabiosis during chronic hypoxia to induce miR-210 production and PH, miR-210 was undetectable in knockout-knockout mice pairs. However, in plasma and lung endothelium, but not smooth muscle or adventitia, miR-210 was observed in knockout mice of WT-knockout pairs. This was accompanied by downregulation of miR-210 targets ISCU (iron-sulfur assembly proteins)1/2 and COX10 (cytochrome c oxidase assembly protein-10), indicating endothelial import of functional miR-210. Via hemodynamic and histological indices, knockout-knockout pairs were protected from PH, whereas knockout mice in WT-knockout pairs developed PH. In particular, pulmonary vascular engraftment of miR-210-positive interstitial lung macrophages was observed in knockout mice of WT-knockout pairs. To address whether engrafted miR-210-positive myeloid or lymphoid cells contribute to paracrine miR-210 delivery, we studied miR-210 knockout mice parabiosed with miR-210 WT; Cx3cr1 knockout mice (deficient in myeloid recruitment) or miR-210 WT; Rag1 knockout mice (deficient in lymphocytes). In both pairs, miR-210 knockout mice still displayed miR-210 delivery and PH, thus demonstrating a pathogenic endocrine delivery of extracellular miR-210. CONCLUSIONS: Endogenous blood-borne transport of miR-210 into pulmonary vascular endothelial cells promotes PH, offering fundamental insight into the systemic physiology of microRNA activity. These results also describe a platform for RNA-mediated crosstalk in PH, providing an impetus for developing blood-based miR-210 technologies for diagnosis and therapy in this disease.


Assuntos
Endotélio Vascular/metabolismo , Hipertensão Pulmonar/metabolismo , Pulmão/irrigação sanguínea , MicroRNAs/metabolismo , Animais , Transplante de Medula Óssea , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipóxia/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/sangue , MicroRNAs/genética , Parabiose , Transdução de Sinais
13.
Proc Natl Acad Sci U S A ; 116(52): 26343-26352, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843939

RESUMO

In the vicinity of a tipping point, critical transitions occur when small changes in an input condition cause sudden, large, and often irreversible changes in the state of a system. Many natural systems ranging from ecosystems to molecular biosystems are known to exhibit critical transitions in their response to stochastic perturbations. In diseases, an early prediction of upcoming critical transitions from a healthy to a disease state by using early-warning signals is of prime interest due to potential application in forecasting disease onset. Here, we analyze cell-fate transitions between different phenotypes (epithelial, hybrid-epithelial/mesenchymal [E/M], and mesenchymal states) that are implicated in cancer metastasis and chemoresistance. These transitions are mediated by a mutually inhibitory feedback loop-microRNA-200/ZEB-driven by the levels of transcription factor SNAIL. We find that the proximity to tipping points enabling these transitions among different phenotypes can be captured by critical slowing down-based early-warning signals, calculated from the trajectory of ZEB messenger RNA level. Further, the basin stability analysis reveals the unexpectedly large basin of attraction for a hybrid-E/M phenotype. Finally, we identified mechanisms that can potentially elude the transition to a hybrid-E/M phenotype. Overall, our results unravel the early-warning signals that can be used to anticipate upcoming epithelial-hybrid-mesenchymal transitions. With the emerging evidence about the hybrid-E/M phenotype being a key driver of metastasis, drug resistance, and tumor relapse, our results suggest ways to potentially evade these transitions, reducing the fitness of cancer cells and restricting tumor aggressiveness.

14.
Circulation ; 142(3): 244-258, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32316750

RESUMO

BACKGROUND: Diabetes mellitus is a prevalent public health problem that affects about one-third of the US population and leads to serious vascular complications with increased risk for coronary artery disease. How bone marrow hematopoiesis contributes to diabetes mellitus complications is incompletely understood. We investigated the role of bone marrow endothelial cells in diabetic regulation of inflammatory myeloid cell production. METHODS: In 3 types of mouse diabetes mellitus, including streptozotocin, high-fat diet, and genetic induction using leptin-receptor-deficient db/db mice, we assayed leukocytes, hematopoietic stem and progenitor cells (HSPC). In addition, we investigated bone marrow endothelial cells with flow cytometry and expression profiling. RESULTS: In diabetes mellitus, we observed enhanced proliferation of HSPC leading to augmented circulating myeloid cell numbers. Analysis of bone marrow niche cells revealed that endothelial cells in diabetic mice expressed less Cxcl12, a retention factor promoting HSPC quiescence. Transcriptome-wide analysis of bone marrow endothelial cells demonstrated enrichment of genes involved in epithelial growth factor receptor (Egfr) signaling in mice with diet-induced diabetes mellitus. To explore whether endothelial Egfr plays a functional role in myelopoiesis, we generated mice with endothelial-specific deletion of Egfr (Cdh5CreEgfrfl/fl). We found enhanced HSPC proliferation and increased myeloid cell production in Cdh5CreEgfrfl/fl mice compared with wild-type mice with diabetes mellitus. Disrupted Egfr signaling in endothelial cells decreased their expression of the HSPC retention factor angiopoietin-1. We tested the functional relevance of these findings for wound healing and atherosclerosis, both implicated in complications of diabetes mellitus. Inflammatory myeloid cells accumulated more in skin wounds of diabetic Cdh5CreEgfrfl/fl mice, significantly delaying wound closure. Atherosclerosis was accelerated in Cdh5CreEgfrfl/fl mice, leading to larger and more inflamed atherosclerotic lesions in the aorta. CONCLUSIONS: In diabetes mellitus, bone marrow endothelial cells participate in the dysregulation of bone marrow hematopoiesis. Diabetes mellitus reduces endothelial production of Cxcl12, a quiescence-promoting niche factor that reduces stem cell proliferation. We describe a previously unknown counterregulatory pathway, in which protective endothelial Egfr signaling curbs HSPC proliferation and myeloid cell production.


Assuntos
Células da Medula Óssea/metabolismo , Células Endoteliais/metabolismo , Mielopoese , Animais , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , Modelos Biológicos , Células Mieloides/metabolismo , Mielopoese/genética , Transdução de Sinais , Transcriptoma
15.
Pharmacol Res ; 170: 105692, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34182130

RESUMO

Extracellular vesicles are heterogeneous structures surrounded by cell membranes and carry complex contents including nucleotides, proteins, and lipids. These proteins include cytokines and chemokines that are important for exaggerating local and systemic inflammation in disease. Extracellular vesicles are mainly categorized as exosomes and micro-vesicles, which are directly shed from the endosomal system or originated from the cell membrane, respectively. By transporting several bioactive molecules to recipient cells and tissues, extracellular vesicles have favorable, neutral, or detrimental impacts on their targets, such as switching cell phenotype, modulating gene expression, and controlling biological pathways such as inflammatory cell recruitment, activation of myeloid cells and cell proliferation. Extracellular vesicles mediate these functions via both autocrine and paracrine signaling. In the cardiovascular system, extracellular vesicles can be secreted by multiple cell types like cardiomyocytes, smooth muscle cells, macrophages, monocytes, fibroblasts, and endothelial cells, and affect functions of cells or tissues in distant organs. These effects involve maintaining homeostasis, regulating inflammation, and triggering pathological process in cardiovascular disease. In this review, we mainly focus on the role of micro-vesicles and exosomes, two important subtypes of extracellular vesicles, in local and systemic inflammation in cardiovascular diseases such as myocardial infarction, atherosclerosis and heart failure. We summarize recent findings and knowledge on the effect of extracellular vesicles in controlling both humoral and cellular immunity, and the therapeutic approaches to harness this knowledge to control exacerbated inflammation in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/metabolismo , Vesículas Extracelulares/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/imunologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Inflamação/genética , Inflamação/imunologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais
16.
Phytother Res ; 35(12): 6990-7003, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34734439

RESUMO

Metabolic disturbances in different tissue cells and obesity are caused by excessive calorie intake, and medicinal plants are potential sources of phytochemicals for combating these health problems. This study investigated the role of methanolic extract of the folklore medicinal plant Lysimachia candida (LCM) and its phytochemical, astragalin, in managing obesity in vivo and in vitro. Administration of LCM (200 mg/kg/body weight) daily for 140 days significantly decreased both the body weight gain (15.66%) and blood triglyceride and free fatty acid levels in high-fat-diet-fed male Wistar rats but caused no substantial change in leptin and adiponectin levels. The protein expression of adipogenic transcription factors in visceral adipose tissue was significantly reduced. Further, the 3T3-L1 cell-based assay revealed that the butanol fraction of LCM and its isolated compound, astragalin, exhibited antiadipogenic activity through downregulating adipogenic transcription factors and regulatory proteins. Molecular docking studies were performed to depict the possible binding patterns of astragalin to adipogenesis proteins. Overall, we show the potential antiobesity effects of L. candida and its bioactive compound, astragalin, and suggest clinical studies with LCM and astragalin.


Assuntos
Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade , Quempferóis/farmacologia , Extratos Vegetais/farmacologia , Primulaceae , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Adipócitos , Animais , Fármacos Antiobesidade/farmacologia , Diferenciação Celular , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Primulaceae/química , Ratos , Ratos Wistar , Proteínas de Ligação a Tacrolimo/metabolismo
17.
J Immunol ; 200(10): 3612-3625, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632145

RESUMO

Pulmonary inflammation, which is characterized by the presence of perivascular macrophages, has been proposed as a key pathogenic driver of pulmonary hypertension (PH), a vascular disease with increasing global significance. However, the mechanisms of expansion of lung macrophages and the role of blood-borne monocytes in PH are poorly understood. Using multicolor flow cytometric analysis of blood in mouse and rat models of PH and patients with PH, an increase in blood monocytes was observed. In parallel, lung tissue displayed increased chemokine transcript expression, including those responsible for monocyte recruitment, such as Ccl2 and Cx3cl1, accompanied by an expansion of interstitial lung macrophages. These data indicate that blood monocytes are recruited to lung perivascular spaces and differentiate into inflammatory macrophages. Correspondingly, parabiosis between congenically different hypoxic mice demonstrated that most interstitial macrophages originated from blood monocytes. To define the actions of these cells in PH in vivo, we reduced blood monocyte numbers via genetic deficiency of cx3cr1 or ccr2 in chronically hypoxic male mice and by pharmacologic inhibition of Cx3cl1 in monocrotaline-exposed rats. Both models exhibited decreased inflammatory blood monocytes, as well as interstitial macrophages, leading to a substantial decrease in arteriolar remodeling but with a less robust hemodynamic effect. This study defines a direct mechanism by which interstitial macrophages expand in PH. It also demonstrates a pathway for pulmonary vascular remodeling in PH that depends upon interstitial macrophage-dependent inflammation yet is dissociated, at least in part, from hemodynamic consequences, thus offering guidance on future anti-inflammatory therapeutic strategies in this disease.


Assuntos
Hipertensão Pulmonar/patologia , Macrófagos Alveolares/patologia , Monócitos/patologia , Pneumonia/patologia , Animais , Quimiocina CCL2/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Pneumonia/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores CCR2/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(5): 1099-1104, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096390

RESUMO

Maternal microchimerism (MMc) has been associated with development of allospecific transplant tolerance, antitumor immunity, and cross-generational reproductive fitness, but its mode of action is unknown. We found in a murine model that MMc caused exposure to the noninherited maternal antigens in all offspring, but in some, MMc magnitude was enough to cause membrane alloantigen acquisition (mAAQ; "cross-dressing") of host dendritic cells (DCs). Extracellular vesicle (EV)-enriched serum fractions from mAAQ+, but not from non-mAAQ, mice reproduced the DC cross-dressing phenomenon in vitro. In vivo, mAAQ was associated with increased expression of immune modulators PD-L1 (programmed death-ligand 1) and CD86 by myeloid DCs (mDCs) and decreased presentation of allopeptide+self-MHC complexes, along with increased PD-L1, on plasmacytoid DCs (pDCs). Remarkably, both serum EV-enriched fractions and membrane microdomains containing the acquired MHC alloantigens included CD86, but completely excluded PD-L1. In contrast, EV-enriched fractions and microdomains containing allopeptide+self-MHC did not exclude PD-L1. Adoptive transfer of allospecific transgenic CD4 T cells revealed a "split tolerance" status in mAAQ+ mice: T cells recognizing intact acquired MHC alloantigens proliferated, whereas those responding to allopeptide+self-MHC did not. Using isolated pDCs and mDCs for in vitro culture with allopeptide+self-MHC-specific CD4 T cells, we could replicate their normal activation in non-mAAQ mice, and PD-L1-dependent anergy in mAAQ+ hosts. We propose that EVs provide a physiologic link between microchimerism and split tolerance, with implications for tumor immunity, transplantation, autoimmunity, and reproductive success.


Assuntos
Quimerismo , Células Dendríticas/imunologia , Vesículas Extracelulares/imunologia , Tolerância Imunológica , Transferência Adotiva , Animais , Antígeno B7-2/biossíntese , Antígeno B7-2/imunologia , Antígeno B7-H1/biossíntese , Antígeno B7-H1/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Transfusão Feto-Materna/imunologia , Antígenos H-2/genética , Antígenos H-2/imunologia , Antígeno de Histocompatibilidade H-2D/genética , Antígeno de Histocompatibilidade H-2D/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Isoantígenos/imunologia , Masculino , Troca Materno-Fetal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Imunológicos , Gravidez , Especificidade do Receptor de Antígeno de Linfócitos T
20.
Diabetologia ; 62(12): 2325-2339, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31511929

RESUMO

AIMS/HYPOTHESIS: Absent in melanoma 2 (AIM2) is a cytosolic sensor for double-stranded DNA and a tumour suppressor. Binding of double-stranded DNA to AIM2 forms the AIM2 inflammasome, leading to activation of caspase-1 and production of IL-1ß and IL-18. Although inflammasome-independent effects of AIM2 have been reported, its role in energy metabolism is unknown. We aimed to evaluate the effect of AIM2 in energy metabolism and glucose homeostasis. METHODS: Male and female whole body Aim2 knockout (Aim2-/-) mice were used in the current study. Body weight, food intake, body composition, energy expenditure, fasting blood glucose levels, GTT and body temperature were measured at indicated time points. RNA sequencing was carried out on gonadal white adipose tissue (gWAT) in 14-month-old female mice. mRNA and protein levels in tissues were analysed by quantitative real-time PCR and immunoblot. Immune cell infiltration in gWAT was examined by flow cytometry. Stromal vascular fractions isolated from gWAT were used to investigate adipocyte differentiation. RESULTS: Male and female Aim2-/- mice were obese compared with wild-type controls from 7 weeks of age until 51 weeks of age, with increased adiposity in both subcutaneous and visceral fat depots. While there were no differences in food intake, Aim2-/- mice demonstrated decreased energy expenditure and impaired brown adipose tissue function compared with wild-type controls. Fasting glucose and insulin levels were elevated, and Aim2-/- mice were glucose intolerant on intraperitoneal GTT. RNA sequencing revealed marked upregulation of the IFN-inducible gene Ifi202b, which encodes protein 202 (p202) and elevated inflammatory signalling in gWAT of Aim2-/- mice. Increased infiltration of total and Ly6Clow monocytes was noted at 8 weeks of age in gWAT, before the onset of obesity and insulin resistance. Ifi202b knockdown blocked adipogenesis in stromal vascular fractions and reduced inflammation in bone marrow-derived macrophages, demonstrating a key role of p202 in mediating the increased adipogenesis and inflammation in Aim2-/- mice. CONCLUSIONS/INTERPRETATION: These results demonstrate a fundamental role for AIM2 in energy metabolism, inflammation and insulin resistance. Our studies establish a novel link between the innate immunity proteins, AIM2 and p202, and metabolism.


Assuntos
Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inflamação/metabolismo , Resistência à Insulina/genética , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Adiposidade/genética , Animais , Glicemia/metabolismo , Temperatura Corporal/genética , Proteínas de Ligação a DNA/genética , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Jejum/metabolismo , Feminino , Inflamação/genética , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA