RESUMO
Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.
Assuntos
Epigênese Genética , Bainha de Mielina , Oligodendroglia , Remielinização , Animais , Bainha de Mielina/metabolismo , Humanos , Camundongos , Remielinização/efeitos dos fármacos , Oligodendroglia/metabolismo , Sistema Nervoso Central/metabolismo , Camundongos Endogâmicos C57BL , Rejuvenescimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Organoides/metabolismo , Organoides/efeitos dos fármacos , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/genética , Diferenciação Celular/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Masculino , Regeneração/efeitos dos fármacos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologiaRESUMO
Multiple sclerosis (MS) is an autoimmune disease characterized by attack on oligodendrocytes within the central nervous system (CNS). Despite widespread use of immunomodulatory therapies, patients may still face progressive disability because of failure of myelin regeneration and loss of neurons, suggesting additional cellular pathologies. Here, we describe a general approach for identifying specific cell types in which a disease allele exerts a pathogenic effect. Applying this approach to MS risk loci, we pinpoint likely pathogenic cell types for 70%. In addition to T cell loci, we unexpectedly identified myeloid- and CNS-specific risk loci, including two sites that dysregulate transcriptional pause release in oligodendrocytes. Functional studies demonstrated inhibition of transcriptional elongation is a dominant pathway blocking oligodendrocyte maturation. Furthermore, pause release factors are frequently dysregulated in MS brain tissue. These data implicate cell-intrinsic aberrations outside of the immune system and suggest new avenues for therapeutic development. VIDEO ABSTRACT.
Assuntos
Comunicação Celular/genética , Doença/genética , Oligodendroglia/metabolismo , Animais , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/fisiologia , Fatores de RiscoRESUMO
Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand-mediated activation hindering myelin repair. Following chronic cuprizone (CPZ)-induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase-/butyrylcholinesterase (BChE)-mediated degradation. Using choline acetyltransferase (ChAT) reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and CPZ demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin-induced demyelination. In CPZ-demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following CPZ demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand-mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand-mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.
Assuntos
Doenças Desmielinizantes , Oligodendroglia , Transdução de Sinais , Animais , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Camundongos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Feminino , Masculino , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Camundongos Endogâmicos C57BL , Acetilcolina/metabolismo , Cuprizona/toxicidade , Lisofosfatidilcolinas/toxicidade , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Colina O-Acetiltransferase/metabolismo , Remielinização/fisiologia , Remielinização/efeitos dos fármacos , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Camundongos TransgênicosRESUMO
OBJECTIVE: Microglia/macrophages line the border of demyelinated lesions in both cerebral white matter and the cortex in the brains of multiple sclerosis patients. Microglia/macrophages associated with chronic white matter lesions are thought to be responsible for slow lesion expansion and disability progression in progressive multiple sclerosis, whereas those lining gray matter lesions are less studied. Profiling these microglia/macrophages could help to focus therapies on genes or pathways specific to lesion expansion and disease progression. METHODS: We compared the morphology and transcript profiles of microglia/macrophages associated with borders of white matter (WM line) and subpial gray matter lesions (GM line) using laser capture microscopy. We performed RNA sequencing on isolated cells followed by immunocytochemistry to determine the distribution of translational products of transcripts increased in WM line microglia. RESULTS: Cells in the WM line appear activated, with shorter processes and larger cell bodies, whereas those in the GM line appear more homeostatic, with smaller cell bodies and multiple thin processes. Transcript profiling revealed 176 genes in WM lines and 111 genes in GM lines as differentially expressed. Transcripts associated with immune activation and iron homeostasis were increased in WM line microglia, whereas genes belonging to the canonical Wnt signaling pathway were increased in GM line microglia. INTERPRETATION: We propose that the mechanisms of demyelination and dynamics of lesion expansion are responsible for differential transcript expression in WM lines and GM lines, and posit that increased expression of the Fc epsilon receptor, spleen tyrosine kinase, and Bruton's tyrosine kinase, play a key role in regulating microglia/macrophage function at the border of chronic active white matter lesions. ANN NEUROL 2024;95:907-916.
Assuntos
Substância Cinzenta , Macrófagos , Microglia , Esclerose Múltipla , Substância Branca , Humanos , Microglia/metabolismo , Microglia/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Substância Cinzenta/patologia , Substância Cinzenta/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Masculino , Feminino , Substância Branca/patologia , Substância Branca/metabolismo , Pessoa de Meia-Idade , Transcriptoma , Adulto , IdosoRESUMO
Besides antiviral functions, type I IFN expresses potent anti-inflammatory properties and is being widely used to treat certain autoimmune conditions, such as multiple sclerosis. In a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis, administration of IFN-ß effectively attenuates the disease development. However, the precise mechanisms underlying IFN-ß-mediated treatment remain elusive. In this study, we report that IFN-induced protein with tetratricopeptide repeats 2 (Ifit2), a type I and type III IFN-stimulated gene, plays a previously unrecognized immune-regulatory role during autoimmune neuroinflammation. Mice deficient in Ifit2 displayed greater susceptibility to experimental autoimmune encephalomyelitis and escalated immune cell infiltration in the CNS. Ifit2 deficiency was also associated with microglial activation and increased myeloid cell infiltration. We also observed that myelin debris clearance and the subsequent remyelination were substantially impaired in Ifit2-/- CNS tissues. Clearing myelin debris is an important function of the reparative-type myeloid cell subset to promote remyelination. Indeed, we observed that bone marrow-derived macrophages, CNS-infiltrating myeloid cells, and microglia from Ifit2-/- mice express cytokine and metabolic genes associated with proinflammatory-type myeloid cell subsets. Taken together, our findings uncover a novel regulatory function of Ifit2 in autoimmune inflammation in part by modulating myeloid cell function and metabolic activity.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Inflamação , Camundongos Endogâmicos C57BL , Microglia , Células Mieloides , Repetições de Tetratricopeptídeos , Interferons/farmacologiaRESUMO
Multiple sclerosis is a chronic inflammatory disease in which disability results from the disruption of myelin and axons. During the initial stages of the disease, injured myelin is replaced by mature myelinating oligodendrocytes that differentiate from oligodendrocyte precursor cells. However, myelin repair fails in secondary and chronic progressive stages of the disease and with ageing, as the environment becomes progressively more hostile. This may be attributable to inhibitory molecules in the multiple sclerosis environment including activation of the p38MAPK family of kinases. We explored oligodendrocyte precursor cell differentiation and myelin repair using animals with conditional ablation of p38MAPKγ from oligodendrocyte precursors. We found that p38γMAPK ablation accelerated oligodendrocyte precursor cell differentiation and myelination. This resulted in an increase in both the total number of oligodendrocytes and the migration of progenitors ex vivo and faster remyelination in the cuprizone model of demyelination/remyelination. Consistent with its role as an inhibitor of myelination, p38γMAPK was significantly downregulated as oligodendrocyte precursor cells matured into oligodendrocytes. Notably, p38γMAPK was enriched in multiple sclerosis lesions from patients. Oligodendrocyte progenitors expressed high levels of p38γMAPK in areas of failed remyelination but did not express detectable levels of p38γMAPK in areas where remyelination was apparent. Our data suggest that p38γ could be targeted to improve myelin repair in multiple sclerosis.
Assuntos
Esclerose Múltipla , Bainha de Mielina , Oligodendroglia , Remielinização , Animais , Remielinização/fisiologia , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Camundongos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Humanos , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/genética , Diferenciação Celular/fisiologia , Cuprizona/toxicidade , Camundongos Endogâmicos C57BL , Masculino , Feminino , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Camundongos TransgênicosRESUMO
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS). Infiltrating inflammatory immune cells perpetuate demyelination and axonal damage in the CNS and significantly contribute to pathology and clinical deficits. While the cytokine interferon (IFN)γ is classically described as deleterious in acute CNS autoimmunity, we and others have shown astrocytic IFNγ signaling also has a neuroprotective role. Here, we performed RNA sequencing and ingenuity pathway analysis on IFNγ-treated astrocytes and found that PD-L1 was prominently expressed. Interestingly, PD-1/PD-L1 antagonism reduced apoptosis in leukocytes exposed to IFNγ-treated astrocytes in vitro. To further elucidate the role of astrocytic IFNγ signaling on the PD-1/PD-L1 axis in vivo, we induced the experimental autoimmune encephalomyelitis (EAE) model of MS in Aldh1l1-CreERT2, Ifngr1fl/fl mice. Mice with conditional astrocytic deletion of IFNγ receptor exhibited a reduction in PD-L1 expression which corresponded to increased infiltrating leukocytes, particularly from the myeloid lineage, and exacerbated clinical disease. PD-1 agonism reduced EAE severity and CNS-infiltrating leukocytes. Importantly, PD-1 is expressed by myeloid cells surrounding MS lesions. These data support that IFNγ signaling in astrocytes diminishes inflammation during chronic autoimmunity via upregulation of PD-L1, suggesting potential therapeutic benefit for MS patients.
Assuntos
Antígeno B7-H1 , Encefalomielite Autoimune Experimental , Interferon gama , Esclerose Múltipla , Doenças Neurodegenerativas , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Autoimunidade , Antígeno B7-H1/metabolismo , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/patologia , Inflamação/metabolismo , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Doenças Neurodegenerativas/metabolismo , Receptor de Morte Celular Programada 1/metabolismoRESUMO
Antiaromatic molecules have recently received attention because of their intrinsic properties, such as high reactivity and their narrow HOMO-LUMO gaps. Stacking of antiaromatic molecules has been predicted to induce three-dimensional aromaticity via frontier orbital interactions. Here, we report a covalently linked π-π stacked rosarin dimer that has been examined experimentally by steady-state absorption and transient absorption measurements and theoretically by quantum chemical calculations, including time-dependent density functional theory, anisotropy of induced current density, and nucleus-independent chemical shift calculations. Relative to the corresponding monomer, the dimer exhibits diminished antiaromaticity upon lowering the temperature to 77â K, a finding ascribed to intramolecular interactions between the macrocyclic rosarin subunits.
RESUMO
The proinflammatory cytokine IFN-γ, which is chronically elevated in multiple sclerosis, induces pathologic quiescence in human oligodendrocyte progenitor cells (OPCs) via upregulation of the transcription factor PRRX1. In this study using animals of both sexes, we investigated the role of heparan sulfate proteoglycans in the modulation of IFN-γ signaling following demyelination. We found that IFN-γ profoundly impaired OPC proliferation and recruitment following adult spinal cord demyelination. IFN-γ-induced quiescence was mediated by direct signaling in OPCs as conditional genetic ablation of IFNγR1 (Ifngr1) in adult NG2+ OPCs completely abrogated these inhibitory effects. Intriguingly, OPC-specific IFN-γ signaling contributed to failed oligodendrocyte differentiation, which was associated with hyperactive Wnt/Bmp target gene expression in OPCs. We found that PI-88, a heparan sulfate mimetic, directly antagonized IFN-γ to rescue human OPC proliferation and differentiation in vitro and blocked the IFN-γ-mediated inhibitory effects on OPC recruitment in vivo Importantly, heparanase modulation by PI-88 or OGT2155 in demyelinated lesions rescued IFN-γ-mediated axonal damage and demyelination. In addition to OPC-specific effects, IFN-γ-augmented lesions were characterized by increased size, reactive astrogliosis, and proinflammatory microglial/macrophage activation along with exacerbated axonal injury and cell death. Heparanase inhibitor treatment rescued many of the negative IFN-γ-induced sequelae suggesting a profound modulation of the lesion environment. Together, these results suggest that the modulation of the heparanome represents a rational approach to mitigate the negative effects of proinflammatory signaling and rescuing pathologic quiescence in the inflamed and demyelinated human brain.SIGNIFICANCE STATEMENT The failure of remyelination in multiple sclerosis contributes to neurologic dysfunction and neurodegeneration. The activation and proliferation of oligodendrocyte progenitor cells (OPCs) is a necessary step in the recruitment phase of remyelination. Here, we show that the proinflammatory cytokine interferon-γ directly acts on OPCs to induce pathologic quiescence and thereby limit recruitment following demyelination. Heparan sulfate is a highly structured sulfated carbohydrate polymer that is present on the cell surface and regulates several aspects of the signaling microenvironment. We find that pathologic interferon-γ can be blocked by modulation of the heparanome following demyelination using either a heparan mimetic or by treatment with heparanase inhibitor. These studies establish the potential for modulation of heparanome as a regenerative approach in demyelinating disease.
Assuntos
Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Interferon gama/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos KnockoutRESUMO
Germline mutations in PTEN account for ~10% of cases of autism spectrum disorder (ASD) with coincident macrocephaly. To explore the importance of nuclear PTEN in the development of ASD and macrocephaly, we previously generated a mouse model with predominantly cytoplasmic localization of Pten (Ptenm3m4/m3m4).Cytoplasmic predominant Pten localization results in a phenotype of extreme macrocephaly and autistic-like traits. Transcriptomic analysis of the Ptenm3m4/m3m4 cortex found upregulated gene pathways related to myeloid cell activation, myeloid cell migration, and phagocytosis. These transcriptomic findings were used to direct in vitro assays on Pten wild-type and Ptenm3m4/m3m4 microglia. We found increased Iba1 and C1q expression with enhanced phagocytic capacity in Ptenm3m4/m3m4 microglia, indicating microglial activation. Moreover, through a series of neuron-microglia co-culture experiments, we found Ptenm3m4/m3m4 microglia are more efficient at synaptic pruning compared with wild-type controls. In addition, we found evidence for neuron-microglia cross-talk, where Ptenm3m4/m3m4 neurons elicit enhanced pruning from innately activated microglia. Subsequent in vivo studies validated our in vitro findings. We observed a concurrent decline in the expression of Pten and synaptic markers in the Ptenm3m4/m3m4 cortex. At ~3 weeks of age, with a 50% drop in Pten expression compared with wild-type levels, we observed enhanced activation of microglia in the Ptenm3m4/m3m4 brain. Collectively, our data provide evidence that dysregulated Pten in microglia has an etiological role in microglial activation, phagocytosis, and synaptic pruning, creating avenues for future studies on the importance of PTEN in maintaining microglia homeostasis.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , PTEN Fosfo-Hidrolase/genética , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Modelos Animais de Doenças , Camundongos , Microglia , Plasticidade Neuronal , FenótipoRESUMO
Axonal degeneration is central to clinical disability and disease progression in multiple sclerosis (MS). Myeloid cells such as brain-resident microglia and blood-borne monocytes are thought to be critically involved in this degenerative process. However, the exact underlying mechanisms have still not been clarified. We have previously demonstrated that human endogenous retrovirus type W (HERV-W) negatively affects oligodendroglial precursor cell (OPC) differentiation and remyelination via its envelope protein pathogenic HERV-W (pHERV-W) ENV (formerly MS-associated retrovirus [MSRV]-ENV). In this current study, we investigated whether pHERV-W ENV also plays a role in axonal injury in MS. We found that in MS lesions, pHERV-W ENV is present in myeloid cells associated with axons. Focusing on progressive disease stages, we could then demonstrate that pHERV-W ENV induces a degenerative phenotype in microglial cells, driving them toward a close spatial association with myelinated axons. Moreover, in pHERV-W ENV-stimulated myelinated cocultures, microglia were found to structurally damage myelinated axons. Taken together, our data suggest that pHERV-W ENV-mediated microglial polarization contributes to neurodegeneration in MS. Thus, this analysis provides a neurobiological rationale for a recently completed clinical study in MS patients showing that antibody-mediated neutralization of pHERV-W ENV exerts neuroprotective effects.
Assuntos
Axônios/virologia , Retrovirus Endógenos/metabolismo , Microglia/virologia , Esclerose Múltipla/genética , Neurônios/virologia , Proteínas do Envelope Viral/genética , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Diferenciação Celular , Ensaios Clínicos Fase II como Assunto , Técnicas de Cocultura , Retrovirus Endógenos/genética , Retrovirus Endógenos/patogenicidade , Feminino , Expressão Gênica , Humanos , Masculino , Microglia/metabolismo , Microglia/ultraestrutura , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Esclerose Múltipla/virologia , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Bainha de Mielina/virologia , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos , Ratos Wistar , Proteínas do Envelope Viral/metabolismoRESUMO
Supramolecular chemistry is a central topic in modern chemistry. It touches on many traditional disciplines, such as organic chemistry, inorganic chemistry, physical chemistry, materials chemistry, environmental chemistry, and biological chemistry. Supramolecular hosts, inter alia macrocyclic hosts, play critical roles in supramolecular chemistry. Calix[4]pyrroles, non-aromatic tetrapyrrolic macrocycles defined by sp3 hybridized meso bridges, have proved to be versatile receptors for neutral species, anions, and cations, as well as ion pairs. Compared to the parent system, octamethylcalix[4]pyrrole and its derivatives bearing simple appended functionalities, strapped calix[4]pyrroles typically display enhanced binding affinities and selectivities. In this review, we summarize advances in the design and synthesis of strapped calix[4]pyrroles, as well as their broad utility in molecular recognition, supramolecular extraction, separation technology, ion transport, and as agents capable of inhibiting cancer cell proliferation. Future challenges within this sub-field are also discussed.
Assuntos
Calixarenos/química , Calixarenos/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Ânions/química , Apoptose , Cátions/química , Permeabilidade da Membrana Celular , Cristalização , Modelos Moleculares , Estrutura Molecular , Compostos Orgânicos/química , Relação Estrutura-Atividade , TermodinâmicaRESUMO
In spite of unique structural, spectroscopic and redox properties, the synthetic variants of the planar, antiaromatic hexaphyrin (1.0.1.0.1.0) derivatives 2, has been limited due to the low yields and difficulty in access to the starting material. A chemical modification of the meso-substituents could be good alternative overcoming the synthetic barrier. Herein, we report a regio-selective nucleophilic aromatic substitution (SNAr) of meso-pentafluorophenyl group in rosarrin 2 with catechol. The reaction afforded benzodioxane fused rosarrin 3 as single product with high yield. The intrinsic antiaromatic character of the starting rosarrin 2 retained throughout the reactions. Clean, two electron reduction was achieved by treatment of 3 with SnCl2â¢2H2O affording 26π-electron aromatic rosarrin 4. The synthesized compounds exhibited noticeable changes in photophysical and redox properties compared with starting rosarrin 2.
Assuntos
Porfirinas/química , Porfirinas/síntese química , Técnicas Eletroquímicas , Espectrofotometria Ultravioleta , EstereoisomerismoRESUMO
π-π Stacking is omnipresent not only in nature but in a wide variety of practical fields applied to our lives. Because of its importance in a performance of natural and artificial systems, such as light harvesting system and working layer in device, many researchers have put intensive effort into identifying its underlying nature. However, for the case of π-π stacked systems composed of antiaromatic units, the understanding of the fundamental mechanisms is still unclear. Herein, we synthesized a new type of planar ß,ß'-phenylene-bridged hexaphyrin (1.0.1.0.1.0), referred as naphthorosarin which possesses the 24π-electron conjugated pathway. Especially, the corresponding antiaromatic porphyrinoid shows the unique property to form dimeric species adopting the face-to-face geometry which is unprecedented in cases of known annulated naphthorosarins. In order to elucidate the intriguing properties derived from the stacked dimer, the current study focuses on the experimental support to rationalize the observed π-π interactions between the two subunits.
RESUMO
A new molecular donor-acceptor-donor (D-A-D) triad, comprised of an electron deficient 1,4,5,8-naphthalene tetracarboxylic diimide (NDI) unit covalently connected to two flanking photosensitizers, i.e., a bis-heteroleptic Ru(II) complex of 1,10-phenanthroline and pyridine triazole hybrid ligand, is described. The single crystal X-ray structure of the perchlorate salt of the triad demonstrates that the electron deficient NDI unit can act as a host for anions via anion-π interaction. Detailed solution-state studies indicate that fluoride selectively interacts with the D-A-D triad to form a dianionic NDI, NDI2-, via a radical anion, NDIâ¢-. On the contrary, cyanide reduces the NDI moiety to NDIâ¢-, as confirmed by UV-vis, NMR, and EPR spectroscopy. Further, femtosecond transient absorption spectroscopic studies reveal a low luminescence quantum yield of the D-A-D triad attributable to the photoinduced electron transfer (PET) process from the photoactive Ru(II) center to the NDI unit. Interestingly, the triad displays "OFF-ON" luminescence behavior in the presence of fluoride by restoring the Ru(II) to phenanthroline/pyridine-triazole-based MLCT emission, whereas cyanide fails to show a similar property due to a different redox process operational in the latter. The reduction of NDI in the presence of fluoride and cyanide in different polar solvents indicates that involvement of such deprotonated solvents in the electron transfer mechanism may not be operative in our present system. Low-temperature kinetic studies support the formation of a charge transfer associative transient species, which likely allows overcoming the thermodynamically uphill barrier for the direct electron transfer mechanism.
RESUMO
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). The cause of MS is unknown, with no effective therapies available to halt the progressive neurological disability. Development of new and improvement of existing therapeutic strategies therefore require a better understanding of MS pathogenesis, especially during the progressive phase of the disease. This can be achieved through development of biomarkers that can help to identify disease pathophysiology and monitor disease progression. Proteomics is a powerful and promising tool to accelerate biomarker detection and contribute to novel therapeutics. In this review, an overview of how proteomic technology using CNS tissues and biofluids from MS patients has provided important clues to the pathogenesis of MS is provided. Current publications, pitfalls, as well as directions of future research involving proteomic approaches to understand the pathogenesis of MS are discussed.
Assuntos
Biomarcadores/análise , Sistema Nervoso Central/metabolismo , Esclerose Múltipla/metabolismo , Proteoma/análise , Proteômica/métodos , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Sistema Nervoso Central/patologia , Progressão da Doença , Humanos , Espectrometria de Massas/métodos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/terapia , PrognósticoRESUMO
White matter (WM) is injured in most strokes, which contributes to functional deficits during recovery. Casein kinase 2 (CK2) is a protein kinase that is expressed in brain, including WM. To assess the impact of CK2 inhibition on axon recovery following oxygen glucose deprivation (OGD), mouse optic nerves (MONs), which are pure WM tracts, were subjected to OGD with or without the selective CK2 inhibitor CX-4945. CX-4945 application preserved axon function during OGD and promoted axon function recovery when applied before or after OGD. This protective effect of CK2 inhibition correlated with preservation of oligodendrocytes and conservation of axon structure and axonal mitochondria. To investigate the pertinent downstream signaling pathways, siRNA targeting the CK2α subunit identified CDK5 and AKT as downstream molecules. Consequently, MK-2206 and roscovitine, which are selective AKT and CDK5 inhibitors, respectively, protected young and aging WM function only when applied before OGD. However, a novel pan-AKT allosteric inhibitor, ARQ-092, which targets both the inactive and active conformations of AKT, conferred protection to young and aging axons when applied before or after OGD. These results suggest that AKT and CDK5 signaling contribute to the WM functional protection conferred by CK2 inhibition during ischemia, while inhibition of activated AKT signaling plays the primary role in post-ischemic protection conferred by CK2 inhibition in WM independent of age. CK2 inhibitors are currently being used in clinical trials for cancer patients; therefore, our results will provide rationale for repurposing these drugs as therapeutic options for stroke patients by adding novel targets.
Assuntos
Envelhecimento , Isquemia Encefálica/metabolismo , Caseína Quinase II/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Isquemia Encefálica/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologiaRESUMO
Peripherally substituted antiaromatic naphthorosarins have been synthesized for the first time. The synthesis was accomplished by acid-catalyzed condensation of naphthobipyrrole building blocks with aromatic aldehydes. The naphthobipyrrole building blocks were synthesized by simple oxidative coupling of the corresponding pyrrole substituted aromatics. Solid-state structural analyses of the synthesized naphthorosarins revealed that the presence of meso-2,6-dichlorophenyl- and 5,6-difluoro-substitution substantially alter the geometry and properties of the naphthorosarins. The substituents affect the redox potentials as well and, in turn, the proton-coupled electron-transfer processes leading to the formation of one- and two-electron reduced forms of the corresponding naphthorosarins. One particular naphthorosarin that bears both peripheral fluorine and meso-2,6-dichlorophenyl substituents forms a stable 25â π-electron species upon treating with TFA that was characterized by single-crystal X-ray diffraction analysis. The current study underscores how structural modifications can be used to fine-tune the electronic features of naphthorosarins, including stabilization of odd electron species.
RESUMO
Current multiple sclerosis (MS) therapies are effective in reducing relapse rate, short-term measures of disability, and magnetic resonance imaging (MRI) measures of inflammation in relapsing remitting MS (RRMS), whereas in progressive/degenerative disease phases these medications are of little or no benefit. Therefore, the development of new therapies aimed at reversing neurodegeneration is of great interest. Remyelination, which is usually a spontaneous endogenous process, is achieved when myelin-producing oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs). Even though these precursor cells are abundant in MS brains, their regeneration capacity is limited. Enhancing the generation of myelin-producing cells is therefore a major focus of MS research. Here we present an overview of the different advancements in the field of remyelination, including suitable animal models for testing remyelination therapies, approved medications with a proposed role in regeneration, myelin repair treatments under investigation in clinical trials, as well as future therapeutics aimed at facilitating myelin repair.
Assuntos
Esclerose Múltipla/tratamento farmacológico , Oligodendroglia/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Animais , HumanosRESUMO
meso-Substituted calix[4]pyrroles 2-6 containing a direct meso-ethynyl linker displayed high binding affinities and unique conformational features on halide anion binding. A general conformational bias for the equatorial alignments of the meso-(aryl)ethynyl groups was observed in the host-halide complexes which was attributed to the repulsive anion-alkyne interactions and released steric strain. Such conformational features of host-halide complexes persisted even in the case of calix[4]pyrrole 6 bearing cationic meso components, which displayed the highest binding affinity for chloride anions among known meso-aryl calix[4]pyrroles. Synthetic details, conformational features, and comparative halide anion binding properties of this series of calix[4]pyrroles are described.