Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493666

RESUMO

Vanadium dioxide (VO2), which exhibits a near-room-temperature insulator-metal transition, has great potential in applications of neuromorphic computing devices. Although its volatile switching property, which could emulate neuron spiking, has been studied widely, nanoscale studies of the structural stochasticity across the phase transition are still lacking. In this study, using in situ transmission electron microscopy and ex situ resistive switching measurement, we successfully characterized the structural phase transition between monoclinic and rutile VO2 at local areas in planar VO2/TiO2 device configuration under external biasing. After each resistive switching, different VO2 monoclinic crystal orientations are observed, forming different equilibrium states. We have evaluated a statistical cycle-to-cycle variation, demonstrated a stochastic nature of the volatile resistive switching, and presented an approach to study in-plane structural anisotropy. Our microscopic studies move a big step forward toward understanding the volatile switching mechanisms and the related applications of VO2 as the key material of neuromorphic computing.

2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622788

RESUMO

Vanadium dioxide (VO2) has attracted much attention owing to its metal-insulator transition near room temperature and the ability to induce volatile resistive switching, a key feature for developing novel hardware for neuromorphic computing. Despite this interest, the mechanisms for nonvolatile switching functioning as synapse in this oxide remain not understood. In this work, we use in situ transmission electron microscopy, electrical transport measurements, and numerical simulations on Au/VO2/Ge vertical devices to study the electroforming process. We have observed the formation of V5O9 conductive filaments with a pronounced metal-insulator transition and that vacancy diffusion can erase the filament, allowing for the system to "forget." Thus, both volatile and nonvolatile switching can be achieved in VO2, useful to emulate neuronal and synaptic behaviors, respectively. Our systematic operando study of the filament provides a more comprehensive understanding of resistive switching, key in the development of resistive switching-based neuromorphic computing.

3.
Nanotechnology ; 34(15)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36652700

RESUMO

A methodology to test the interlayer bonding strength of two-dimensional (2D) surfaces and associated one (1D)- and two (2D)- dimensional surface defects using scanning tunneling microscope tip-induced deformation, is demonstrated. Surface elastic deformation characteristics of soft 2D monatomic sheets of graphene and graphite in contrast to NbSe2indicates related association with the underlying local bonding configurations. Surface deformation of 2D graphitic moiré patterns reveal the inter-layer van der Waals strength varying across its domains. These results help in the understanding of the comparable interlayer bonding strength of 1D grain boundary as well as the grains. Anomalous phenomena related to probing 2D materials at small gap distances as a function of strain is discussed.

4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33419957
5.
Phys Rev Lett ; 110(6): 067202, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23432297

RESUMO

We report the creation of a multiferroic field effect device with a BiFeO(3) (BFO) (antiferromagnetic-ferroelectric) gate dielectric and a La(0.7)Sr(0.3)MnO(3) (LSMO) (ferromagnetic) conducting channel that exhibits direct, bipolar electrical control of exchange bias. We show that exchange bias is reversibly switched between two stable states with opposite exchange bias polarities upon ferroelectric poling of the BFO. No field cooling, temperature cycling, or additional applied magnetic or electric field beyond the initial BFO polarization is needed for this bipolar modulation effect. Based on these results and the current understanding of exchange bias, we propose a model to explain the control of exchange bias. In this model the coupled antiferromagnetic-ferroelectric order in BFO along with the modulation of interfacial exchange interactions due to ionic displacement of Fe(3+) in BFO relative to Mn(3+/4+) in LSMO cause bipolar modulation.

6.
Nat Mater ; 9(9): 756-61, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20657590

RESUMO

Electric-field control of magnetization has many potential applications in magnetic memory storage, sensors and spintronics. One approach to obtain this control is through multiferroic materials. Instead of using direct coupling between ferroelectric and ferromagnetic order parameters in a single-phase multiferroic material, which only shows a weak magnetoelectric effect, a unique method using indirect coupling through an intermediate antiferromagnetic order parameter can be used. In this article, we demonstrate electrical control of exchange bias using a field-effect device employing multiferroic (ferroelectric/antiferromagnetic) BiFeO(3) as the dielectric and ferromagnetic La(0.7)Sr(0.3)MnO(3) as the conducting channel; we can reversibly switch between two distinct exchange-bias states by switching the ferroelectric polarization of BiFeO(3). This is an important step towards controlling magnetization with electric fields, which may enable a new class of electrically controllable spintronic devices and provide a new basis for producing electrically controllable spin-polarized currents.

7.
Science ; 223(4634): 355-60, 1984 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-17829876

RESUMO

Recent advances in our understanding of electronic conduction have pointed up deficiencies in traditional thinking. For a metal at a sufficiently low temperature, it is known both theoretically and experimentally that the conventional picture in terms of the Boltzmann theory breaks down. Improved understanding of both electron localization and the effects of electron-electron interactions in a disordered medium has led to experimentally verifiable predictions. These effects have an important influence on the nature of the metal-insulator transition.

8.
Appl Phys Lett ; 113(16): 162602, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30364078

RESUMO

Direct write patterning of high-transition temperature (high-T C) superconducting oxide thin films with a focused helium ion beam is a formidable approach for the scaling of high-T C circuit feature sizes down to the nanoscale. In this letter, we report using this technique to create a sensitive micro superconducting quantum interference device (SQUID) magnetometer with a sensing area of about 100 × 100 µm2. The device is fabricated from a single 35-nm thick YBa2Cu3O7- δ film. A flux concentrating pick-up loop is directly coupled to a 10 nm × 20 µm nano-slit SQUID. The SQUID is defined entirely by helium ion irradiation from a gas field ion source. The irradiation converts the superconductor to an insulator, and no material is milled away or etched. In this manner, a very narrow non-superconducting nano-slit is created entirely within the plane of the film. The narrow slit dimension allows for maximization of the coupling to the field concentrator. Electrical measurements reveal a large 0.35 mV modulation with a magnetic field. We measure a white noise level of 2 µΦ0/Hz1∕2. The field noise of the magnetometer is 4 pT/Hz1∕2 at 4.2 K.

9.
Sci Rep ; 6: 21460, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26888720

RESUMO

The interaction between two different materials can present novel phenomena that are quite different from the physical properties observed when each material stands alone. Strong electronic correlations, such as magnetism and superconductivity, can be produced as the result of enhanced Coulomb interactions between electrons. Two-dimensional materials are powerful candidates to search for the novel phenomena because of the easiness of arranging them and modifying their properties accordingly. In this work, we report magnetic effects in graphene, a prototypical non-magnetic two-dimensional semi-metal, in the proximity with sulfur, a diamagnetic insulator. In contrast to the well-defined metallic behaviour of clean graphene, an energy gap develops at the Fermi energy for the graphene/sulfur compound with decreasing temperature. This is accompanied by a steep increase of the resistance, a sign change of the slope in the magneto-resistance between high and low fields, and magnetic hysteresis. A possible origin of the observed electronic and magnetic responses is discussed in terms of the onset of low-temperature magnetic ordering. These results provide intriguing insights on the search for novel quantum phases in graphene-based compounds.

10.
Nat Nanotechnol ; 10(7): 598-602, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25915196

RESUMO

Since the discovery of the high-transition-temperature superconductors (HTSs), researchers have explored many methods to fabricate superconducting tunnel junctions from these materials for basic science purposes and applications. HTS circuits operating at liquid-nitrogen temperatures (∼77 K) would significantly reduce power requirements in comparison with those fabricated from conventional superconductors. The difficulty is that the superconducting coherence length is very short and anisotropic in these materials, typically ∼2 nm in the a-b plane and ∼0.2 nm along the c axis. The electrical properties of Josephson junctions are therefore sensitive to chemical variations and structural defects on atomic length scales. To make multiple uniform HTS junctions, control at the atomic level is required. In this Letter we demonstrate all-HTS Josephson superconducting tunnel junctions created by using a 500-pm-diameter focused beam of helium ions to directly write tunnel barriers into YBa2Cu3O(7-δ) (YBCO) thin films. We demonstrate the ability to control the barrier properties continuously from conducting to insulating by varying the irradiation dose. This technique could provide a reliable and reproducible pathway for scaling up quantum-mechanical circuits operating at liquid-nitrogen temperatures, as well as an avenue to conduct novel planar superconducting tunnelling studies for basic science.

11.
Phys Rev Lett ; 101(3): 037002, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18764282

RESUMO

We have performed both Josephson and quasiparticle tunneling in vacuum tunnel junctions formed between a conventional superconducting scanning tunneling microscope tip and overdoped Bi_{2}Sr_{2}CaCu_{2}O_{8+delta} single crystals. A Josephson current is observed with a peak centered at a small finite voltage due to the thermal-fluctuation-dominated superconducting phase dynamics. Josephson measurements at different surface locations yield local values for the Josephson I_{C}R_{N} product. Corresponding energy gap measurements were also performed and a surprising inverse correlation was observed between the local I_{C}R_{N} product and the local energy gap.

12.
Phys Rev Lett ; 88(18): 186403, 2002 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-12005705

RESUMO

An anomalous superconducting proximity effect between a strongly correlated electron system and a normal metal is demonstrated. The model system is a 2D ultrathin superconducting quench-condensed Pb film. Such a highly disordered film has a reduced transition temperature (T(c) = 1.7 K) due to the strong e(-)-e(-) interaction. Instead of weakening the superconductivity, an overlayer of Ag on Pb induces an increase of both the T(c) and the gap. The restoration of the electron screening brought about by the quasiparticles from the normal metal can explain this striking inverse proximity effect.

13.
Phys Rev Lett ; 87(9): 097004, 2001 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-11531592

RESUMO

We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50-300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields ( f = 15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA