Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Vector Borne Dis ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38634456

RESUMO

BACKGROUND OBJECTIVES: Anopheles stephensi is responsible for the transmission of malaria in urban areas. Vector competence of An. stephensi from a non-malarious (Coimbatore) and highly malarious (Chennai) urban areas in Tamil Nadu state of India, was investigated to find the reason for non-transmission of malaria in Coimbatore. METHODS: Vector competence (susceptibility/refractoriness) of An. stephensi mosquitoes from Chennai (malarious) and Coimbatore (non-malarious) to Plasmodium vivax (Chennai) was investigated. Bioassays were carried out concurrently in both these strains by artificial membrane feeding technique using the same malaria-infected blood. An. stephensi were dissected to observe infection in midgut and salivary gland. The parasite infection, oocyst and sporozoite positivity rate, the oocyst load, correlation between male-female gametocyte ratio and infection, and Survival Analysis of parasitic stages during sporogony were analyzed and compared. RESULTS: The overall infection rate was 45.8 and 41.2 percent in Chennai and Coimbatore, respectively. Oocyst count ranged from 1-80 and 1-208 respectively and not statistically significant. Oocyst positivity was high from Day 8-21 in both strains. The Mean Survival Day (MSD) for oocyst was Day 14 in both strains. Sporozoite was observed in four experiments in each of the strains and the MSD for sporozoites was Day 20 in Chennai and Day 17 in Coimbatore. INTERPRETATION CONCLUSION: An. stephensi of Chennai and Coimbatore are equally susceptible to P. vivax infection and non-transmission of malaria in Coimbatore can be attributed to external factors such as the presence of preferential breeding habitat, vector density, vector survival, and weather. The only difference observed was the comparatively shortened oocyst maturation time in the Coimbatore strain which requires further investigation.

2.
Malar J ; 22(1): 353, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978494

RESUMO

BACKGROUND: Karnataka is one of the largest states in India and has a wide range of geographical terrains, ecotypes, and prevalence of malaria. It experiences a voluminous influx and efflux of people across the state that affects the spread of malaria. The state deployed focused intervention measures keeping the national objective of malaria elimination as the foremost priority. This brought down malaria cases below a thousand by the year 2021. Furthermore, the state is motivated toward malaria elimination by 2025. This study analyzes the trends in malaria indices over the past three decades in the state and highlights the key intervention measures that impacted the reduction in the malaria burden. METHODS: Data from 1991 to 2021 at the district level was collected from the archives of Regional Office for Health & Family Welfare (ROH&FW), Bangalore. Time-tend analysis on this data was conducted after categorization into three decades. Sequence plots were then plotted on the moving average of Annual Parasite Index for all those three decades. Generalized estimating equation model with Poisson distribution were used to evaluate difference in these indicators with pre and post interventions like LLIN, RDT with ACT and Guppy and Gambusia fishes. RESULTS: Malaria burden across the state has consistently declined over the last three decades with few years of exception. This has coincided with the mortality also steadily declining from 2006 and culminating in zero malaria deaths reported from 2011 to 2019. Morbidity had drastically reduced from the hundred-thousand (1993-2003) to ten thousand (2004-2016) thousands (2017-2020) of cases in this period and less than thousand cases were reported by 2021. Generalized estimating equation (GEE) model revealed significant difference of incidence risk ratio of malaria incidence and deaths, post introduction of interventions like LLIN, RDT with ACT and Guppy and Gambusia fishes, indicating these three as important interventions for reducing the malaria burden. Time trend analysis revealed a linear decreasing trend in malaria cases during 2011-2021 decade. CONCLUSIONS: A linear decreasing trend in malaria cases was observed during 2011-2021 decade. LLIN, RDT with ACT and Guppy and Gambusia fish's interventions significantly helped in reducing the state malaria burden.


Assuntos
Malária , Animais , Humanos , Índia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Morbidade , Prevalência , Incidência
3.
Malar J ; 22(1): 30, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707886

RESUMO

BACKGROUND: Mass distributions of long-lasting insecticidal nets (LLINs) have contributed to large reductions in the malaria burden. However, this success is in jeopardy due in part to the increasing pyrethroid-resistant mosquito population as well as low LLINs coverage in various areas because the lifespan of LLINs is often shorter than the interval between replenishment campaigns. New insecticide-treated nets (ITNs) containing pyrethroid and piperonyl-butoxide (PBO) have shown a greater reduction in the incidence of malaria than pyrethroid LLINs in areas with pyrethroid-resistant mosquitoes. However, the durability (attrition, bio-efficacy, physical integrity and chemical retainment) of pyrethroid-PBO ITNs under operational settings has not been fully characterized. This study will measure the durability of pyrethroid-PBO ITNs to assess whether they meet the World Health Organization (WHO) three years of operational performance criteria required to be categorized as "long-lasting". METHODS: A prospective household randomized controlled trial will be conducted simultaneously in Tanzania, India and Côte d'Ivoire to estimate the field durability of three pyrethroid-PBO ITNs (Veeralin®, Tsara® Boost, and Olyset® Plus) compared to a pyrethroid LLIN: MAGNet®. Durability monitoring will be conducted up to 36 months post-distribution and median survival in months will be calculated. The proportion of ITNs: (1) lost (attrition), (2) physical integrity, (3) resistance to damage score, (4) meeting WHO bio-efficacy (≥ 95% knockdown after 1 h or ≥ 80% mortality after 24 h for WHO cone bioassay, or ≥ 90% blood-feeding inhibition or ≥ 80% mortality after 24 h for WHO Tunnel tests) criteria against laboratory-reared resistant and susceptible mosquitoes, and insecticidal persistence over time will be estimated. The non-inferiority of Veeralin® and Tsara® Boost to the first-in-class, Olyset® Plus will additionally be assessed for mortality, and the equivalence of 20 times washed ITNs compared to field aged ITNs will be assessed for mortality and blood-feeding inhibition endpoints in the Ifakara Ambient Chamber Test, Tanzania. CONCLUSION: This will be the first large-scale prospective household randomized controlled trial of pyrethroid-PBO ITNs in three different countries in East Africa, West Africa and South Asia, simultaneously. The study will generate information on the replenishment intervals for PBO nets.


Assuntos
Mosquiteiros Tratados com Inseticida , Malária , Butóxido de Piperonila , Piretrinas , Animais , Humanos , Côte d'Ivoire , Resistência a Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/métodos , Butóxido de Piperonila/farmacologia , Estudos Prospectivos , Piretrinas/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Tanzânia
4.
J Nutr ; 152(7): 1597-1610, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35294009

RESUMO

In the United States, women, while having a longer life expectancy than men, experience a differential risk for chronic diseases and have unique nutritional needs based on physiological and hormonal changes across the life span. However, much of what is known about health is based on research conducted in men. Additional complexity in assessing nutritional needs within gender include the variations in genetics, body compositions, hormonal milieus, underlying chronic diseases, and medication usage, with this list expanding as we consider these variables across the life course. It is clear women experience nutrient shortfalls during key periods of their lives, which may differentially impact their health. Consequently, as we move into the era of precision nutrition, understanding these sex- and gender-based differences may help optimize recommendations and interventions chosen to support health and weight management. Recently, a scientific conference was convened with content experts to explore these topics from a life-course perspective at biological, physiological, and behavioral levels. This publication summarizes the presentations and discussions from the workshop and provides an overview of important nutrition and related lifestyle considerations across the life course. The landscape of addressing female-specific nutritional needs continues to grow; now more than ever, it is essential to increase our understanding of the physiological differences between men and women, and determine how these physiological considerations may aid in optimizing nutritional strategies to support certain personal goals related to health, quality of life, sleep, and exercise performance among women.


Assuntos
Qualidade de Vida , Caracteres Sexuais , Feminino , Humanos , Estilo de Vida , Masculino , Estado Nutricional , Fatores Sexuais , Estados Unidos
5.
Parasitol Res ; 121(1): 105-114, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34773504

RESUMO

In an urban setting, it is a difficult task to collect adult Anopheles stephensi, unlike the immature stages, due to various reasons. A longitudinal study was undertaken from January 2016 to April 2017, with CDC light traps to collect adult Anopheles stephensi and other mosquito species in houses located in a few slums of Chennai, India. A total of 203 trap collections were made indoors from human dwellings having different roof types, as well as outdoors. Three to four trap collections were made at night (18:00 to 06:00 h) once a week. Overall, Culex quinquefasciatus (64%) was the predominant mosquito species captured, followed by An. stephensi (24%). In 98 of the 203 trap collections (48.3%), at least one female An. stephensi was trapped. In all, 224 female An. stephensi were trapped, of which the majority were collected during monsoon and winter seasons. Compared to outdoors, 10% more An. stephensi, the majority of them unfed, were collected indoors, with relatively more contribution coming from asbestos-roofed houses (71.4%), followed by thatched-roof houses (47.3%). Overall, 2.2% positivity for Plasmodium vivax was detected in An. stephensi through Circumsporozoite-ELISA. Binary logistic regression model indicated that season (winter and monsoon), asbestos-roofed dwelling, lesser number of rooms in a house, and more members in a family were significant predictor variables for the odds of trapping an An. stephensi. The study brought out significant factors associated with the presence of An. stephensi in urban slums setting in Chennai, where malaria is declining. The findings would help in devising targeted, effective vector control interventions for malaria elimination in urban settings.


Assuntos
Anopheles , Malária , Animais , Feminino , Humanos , Índia , Estudos Longitudinais , Mosquitos Vetores , Áreas de Pobreza
6.
J Vector Borne Dis ; 59(4): 375-379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36751769

RESUMO

India's target of malaria elimination by 2030 may not be achieved solely by detecting Plasmodium falciparum and P. vivax, the two common Plasmodium species causing infections in humans. Sporadic reports have been documented on other Plasmodium species in the country, associated mostly with travel history. A febrile patient of Indian origin (Non-resident Indian (NRI)) was diagnosed with an infection of Plasmodium ovale curtisi malaria on his arrival from Sudan. A case report from Kerala was published in December 2020 and this is second report. Due to the inaccessibility of molecular techniques for routine diagnosis, this neglected non-falciparum malaria goes undetected. For an accurate diagnosis, suspected malaria cases should be tested using PCR and other advanced methods.


Assuntos
Malária Vivax , Malária , Plasmodium ovale , Plasmodium , Humanos , Malária/diagnóstico , Índia
7.
J Vector Borne Dis ; 57(1): 63-70, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33818458

RESUMO

BACKGROUND & OBJECTIVES: Mosquitoes are vectors of several important vector-borne diseases (VBDs) like malaria, dengue, chikungunya, Japanese encephalitis (JE) and lymphatic filariasis (LF). Globally, these VBDs are of major public health concern including India. The information on vector mosquitoes from Thiruvarur district in Tamil Nadu state remains largely either unknown or undocumented. The present study was, therefore, undertaken to find out the seasonal variation in mosquitoes with special reference to dengue vectors in rural areas of Thiruvarur district, Tamil Nadu, India. METHODS: Surveillance of immature vector mosquitoes was undertaken from March 2018 to February 2019. The emerged adults were identified to find out the composition of mosquito species prevalent in the district. The seasonal variations of the mosquitoes especially dengue vectors were analysed for summer (March-July) spring (August-November) and winter (December-February) seasons in all the blocks of Thiruvarur district. RESULTS: A total of 4879 mosquitoes emerged from the immature collection and the species identification revealed the prevalence of both vector and non-vector species. Five important mosquito vectors collected were -Aedes albopictus, Ae. aegypti, Culex tritaeniorhynchus, Cx. gelidus, and Cx. quinquefasciatus. Other mosquito species collected were Lutzia fuscana, Anopheles barbirostris, An. subpictus, and Armigeres (Armigeres) subalbatus. During the spring season, the dengue vectors showed high indices of breateau index (BI), ranging from 16 to 120; besides, container index (CI) ranging from14.29 to 68.57 and pupal index (PI) from 53.33 to 295 among the study blocks. The major breeding sites were discarded plastic containers, discarded tyres, open sintex tanks (water storage tanks), cement tanks, discarded fibre box, pleated plastic sheets, tree holes, bamboo cut stumps, coconut spathe, and coconut shells. INTERPRETATION & CONCLUSION: The immature vector surveillance revealed seasonal variations in the entomological indices of Aedes breeding potential. The high indices observed indicate high Aedes breeding density and, therefore, a higher risk for dengue/chikungunya outbreaks in rural areas of Thiruvarur district. The present finding warrants intensive surveillance and follow up vector control measures to avert outbreaks and prevent vector-borne diseases. Health education and the community participation in awareness camps prior to monsoon and societal commitment will help in strengthening source reduction, anti-larval operations and anti-adult measures to tackle vector-borne diseases especially dengue.


Assuntos
Culicidae/virologia , Dengue/transmissão , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , População Rural , Estações do Ano , Aedes/fisiologia , Aedes/virologia , Animais , Anopheles/fisiologia , Anopheles/virologia , Culex/fisiologia , Culex/virologia , Culicidae/classificação , Culicidae/fisiologia , Dengue/prevenção & controle , Dengue/virologia , Surtos de Doenças , Índia , Larva/fisiologia , Larva/virologia , Pupa/fisiologia , Pupa/virologia
8.
Malar J ; 18(1): 425, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842894

RESUMO

BACKGROUND: Identifying highly immunogenic blood stage antigens which can work as target for naturally acquired antibodies in different eco-epidemiological settings is an important step for designing malaria vaccine. Blood stage proteins of Plasmodium vivax, apical membrane antigen-1 (PvAMA-1) and 19 kDa fragment of merozoite surface protein (PvMSP-119) are such promising vaccine candidate antigens. This study determined the naturally-acquired antibody response to PvAMA-1 and PvMSP-119 antigens in individuals living in three geographically diverse malaria endemic regions of India. METHODS: A total of 234 blood samples were collected from individuals living in three different eco-epidemiological settings, Chennai, Nadiad, and Rourkela of India. Indirect ELISA was performed to measure human IgG antibodies against recombinant PvAMA-1 and PvMSP-119 antigens. The difference in seroprevalence and factors associated with antibody responses at each site was statistically analysed. RESULTS: The overall seroprevalence was 40.6% for PvAMA-1 and 62.4% for PvMSP-119. Seroprevalence to PvAMA-1 was higher in Chennai (47%) followed by Nadiad (46.7%) and Rourkela (27.6%). For PvMSP-119, seroprevalence was higher in Chennai (80.3%) as compared to Nadiad (53.3%) and Rourkela (57.9%). Seroprevalence for both the antigens were found to be higher in Chennai where P. vivax is the dominant malaria species. In addition, heterogeneous antibody response was observed for PvAMA-1 and PvMSP-119 antigens at each of the study sites. Two factors, age and malaria positivity were significantly associated with seropositivity for both the antigens PvAMA-1 and PvMSP-119. CONCLUSION: These data suggest that natural acquired antibody response is higher for PvMSP-119 antigen as compared to PvAMA-1 antigen in individuals living in three geographically diverse malaria endemic regions in India. PvMSP-119 appears to be highly immunogenic in Indian population and has great potential as a malaria vaccine candidate. The differences in immune response against vaccine candidate antigens in different endemic settings should be taken into account for development of asexual stage based P. vivax malaria vaccine, which in turn can enhance malaria control efforts.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Malária Vivax/imunologia , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Formação de Anticorpos , Antígenos de Protozoários/sangue , Criança , Doenças Endêmicas , Ensaio de Imunoadsorção Enzimática , Feminino , Geografia , Humanos , Imunoglobulina G/sangue , Índia , Malária Vivax/prevenção & controle , Masculino , Proteínas de Membrana/sangue , Proteína 1 de Superfície de Merozoito/sangue , Pessoa de Meia-Idade , Plasmodium vivax , Proteínas de Protozoários/sangue , Estudos Soroepidemiológicos , Adulto Jovem
9.
Malar J ; 17(1): 4, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304794

RESUMO

BACKGROUND: Household and environmental factors are reported to influence the malaria endemicity of a place. Hence, a careful assessment of these factors would, potentially help in locating the possible areas under risk to plan and adopt the most suitable and appropriate malaria control strategies. METHODS: A cross-sectional household survey was carried out in the study site, Besant Nagar, Chennai, through random sampling method from February 2014 to February 2015. A structured interviewer-administered questionnaire was used to assess selected variables of demography, structural particulars of a household, usage of repellents, animals on site, presence of breeding habitats and any mosquito/vector breeding in the household, malaria/vector control measures undertaken by government in each houses. The data was collected through one to one personal interview method, statistically analysed overall and compared between the households/people infected with malaria within a period of 1 year and their non-infected counterparts of the same area. RESULTS: Presence of malaria was found to be significantly associated with the occupation, number of inhabitants, presence of a separate kitchen, availability of overhead tanks and cisterns, immatures of vector mosquitoes, presence of mosquito breeding and type of roof structures (p < 0.05). However, age, gender, usage of repellents, animals on site, number of breeding habitats or detection of vector breeding did not significantly associate with the malaria incidence/prevalence. CONCLUSIONS: The survey revealed various demographic, household and environmental factors likely to associate with the malaria incidence/prevalence in an urban slum of Chennai. The socio-demographic and household variables have revealed disparities in malaria infection from the present cross sectional study. The absence of significant association with many parameters indicates the probable role of other confounding factors which influence the malaria prevalence.


Assuntos
Características da Família , Malária/epidemiologia , Áreas de Pobreza , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Índia/epidemiologia , Lactente , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Fatores Socioeconômicos , Inquéritos e Questionários , Adulto Jovem
10.
Malar J ; 17(1): 201, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769075

RESUMO

BACKGROUND: Environmental factors such as temperature, relative humidity and their daily variation influence a range of mosquito life history traits and hence, malaria transmission. The standard way of characterizing environmental factors with meteorological station data need not be the actual microclimates experienced by mosquitoes within local transmission settings. METHODS: A year-long study was conducted in Chennai, India to characterize local temperature and relative humidity (RH). Data loggers (Hobos) were placed in a range of probable indoor and outdoor resting sites of Anopheles stephensi. Recordings were taken hourly to estimate mean temperature and RH, together with daily temperature range (DTR) and daily relative humidity range. The temperature data were used to explore the predicted variation in extrinsic incubation period (EIP) of Plasmodium falciparum and Plasmodium vivax between microhabitats and across the year. RESULTS: Mean daily temperatures within the indoor settings were significantly warmer than those recorded outdoors. DTR in indoor environments was observed to be modest and ranged from 2 to 6 °C. Differences in EIP between microhabitats were most notable during the hottest summer months of April-June, with parasite development predicted to be impaired for tiled houses and overhead tanks. Overall, the prevailing warm and stable conditions suggest rapid parasite development rate regardless of where mosquitoes might rest. Taking account of seasonal and local environmental variation, the predicted EIP of P. falciparum varied from a minimum of 9.1 days to a maximum of 15.3 days, while the EIP of P. vivax varied from 8.0 to 24.3 days. CONCLUSIONS: This study provides a detailed picture of the actual microclimates experienced by mosquitoes in an urban slum malaria setting. The data indicate differences between microhabitats that could impact mosquito and parasite life history traits. The predicted effects for EIP are often relatively subtle, but variation between minimum and maximum EIPs can play a role in disease transmission, depending on the time of year and where mosquitoes rest. Appropriate characterization of the local microclimate conditions would be the key to fully understand the effects of environment on local transmission ecology.


Assuntos
Período de Incubação de Doenças Infecciosas , Malária Falciparum/transmissão , Malária Vivax/transmissão , Microclima , Índia/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Prevalência
11.
Malar J ; 16(1): 111, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28283033

RESUMO

BACKGROUND: The Indian city of Chennai is endemic for malaria and the known local malaria vector is Anopheles stephensi. Plasmodium vivax is the predominant malaria parasite species, though Plasmodium falciparum is present at low levels. The urban ecotype of malaria prevails in Chennai with perennial transmission despite vector surveillance by the Urban Malaria Scheme (UMS) of the National Vector Borne Disease Control Programme (NVBDCP). Understanding the feeding and resting preferences, together with the transmission potential of adult vectors in the area is essential in effective planning and execution of improved vector control measures. METHODS: A yearlong survey was carried out in cattle sheds and human dwellings to check the resting, feeding preferences and transmission potential of An. stephensi. The gonotrophic status, age structure, resting and host seeking preferences were studied. The infection rate in An. stephensi and Anopheles subpictus were analysed by circumsporozoite ELISA (CS-ELISA). RESULTS: Adult vectors were found more frequently and at higher densities in cattle sheds than human dwellings. The overall Human Blood Index (HBI) was 0.009 indicating the vectors to be strongly zoophilic. Among the vectors collected from human dwellings, 94.2% were from thatched structures and the remaining 5.8% from tiled and asbestos structures. 57.75% of the dissected vectors were nulliparous whereas, 35.83% were monoparous and the rest 6.42% biparous. Sporozoite positivity rate was 0.55% (4/720) and 1.92% (1/52) for An. stephensi collected from cattle sheds and human dwellings, respectively. One adult An. subpictus (1/155) was also found to be infected with P. falciparum. CONCLUSIONS: Control of the adult vector populations can be successful only by understanding the resting and feeding preferences. The present study indicates that adult vectors predominantly feed on cattle and cattle sheds are the preferred resting place, possibly due to easy availability of blood meal source and lack of any insecticide or repellent pressure. Hence targeting these resting sites with cost effective, socially acceptable intervention tools, together with effective larval source management to reduce vector breeding, could provide an improved integrated vector management strategy to help drive down malaria transmission and assist in India's plan to eliminate malaria by 2030.


Assuntos
Anopheles/fisiologia , Comportamento Animal , Comportamento Alimentar , Malária/epidemiologia , Animais , Anopheles/parasitologia , Bovinos , Cidades/epidemiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Habitação , Abrigo para Animais , Humanos , Índia/epidemiologia , Plasmodium/isolamento & purificação , Proteínas de Protozoários/análise , Inquéritos e Questionários
12.
Malar J ; 15(1): 549, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829419

RESUMO

BACKGROUND: The physico-chemical characteristics of lentic aquatic habitats greatly influence mosquito species in selecting suitable oviposition sites; immature development, pupation and adult emergence, therefore are considerations for their preferred ecological niche. Correlating water quality parameters with mosquito breeding, as well as immature vector density, are useful for vector control operations in identifying and targeting potential breeding habitats. METHODS: A total of 40 known habitats of Anopheles stephensi, randomly selected based on a vector survey in parallel, were inspected for the physical and chemical nature of the aquatic environment. Water samples were collected four times during 2013, representing four seasons (i.e., ten habitats per season). The physico-chemical variables and mosquito breeding were statistically analysed to find their correlation with immature density of An. stephensi and also co-inhabitation with other mosquito species. RESULTS: Anopheles stephensi prefer water with low nitrite content and high phosphate content. Parameters such as total dissolved solids, electrical conductivity, total hardness, chloride, fluoride and sulfate had a positive correlation in habitats with any mosquito species breeding (p < 0.05) and also in habitats with An. stephensi alone breeding. Fluoride was observed to have a strong positive correlation with immature density of An. stephensi in both overhead tanks and wells. CONCLUSION: Knowledge of larval ecology of vector mosquitoes is a key factor in risk assessment and for implementing appropriate and sustainable vector control operations. The presence of fluoride in potential breeding habitats and a strong positive correlation with An. stephensi immature density is useful information, as fluoride can be considered an indicator/predictor of vector breeding. Effective larval source management can be focussed on specified habitats in vulnerable areas to reduce vector abundance and malaria transmission.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/crescimento & desenvolvimento , Ecossistema , Fluoretos/metabolismo , Oviposição/efeitos dos fármacos , Água/química , Animais , Anopheles/fisiologia , Fenômenos Químicos , Feminino
13.
Malar J ; 15(1): 274, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27169513

RESUMO

BACKGROUND: Wells and overhead tanks (OHT) are the major breeding sources of the local malaria vector, Anopheles stephensi in the Indian city of Chennai; they play a significant role in vector breeding, and transmission of urban malaria. Many other man-made breeding habitats, such as cemented cisterns/containers, barrels or drums, sumps or underground tanks, and plastic pots/containers are maintained to supplement water needs, temporarily resulting in enhanced mosquito/vector breeding. Correlating breeding habitats with immature vector abundance is important in effective planning to strengthen operational execution of vector control measures. METHODS: A year-long, weekly study was conducted in Chennai to inspect available clear/clean water mosquito breeding habitats. Different breeding features, such as instar-wise, immature density and co-inhabitation with other mosquito species, were analysed. The characteristics of breeding habitats, i.e., type of habitat, water temperature and presence of aquatic organisms, organic matter and green algal remnants on the water surface at the time of inspection, were also studied. Immature density of vector was correlated with presence of other mosquito species, malaria prevalence, habitat characteristics and monthly/seasonal fluctuations. All the data collected from field observations were analysed using standard statistical tools. RESULTS: When the immature density of breeding habitats was analysed, using one-way ANOVA, it was observed that the density did not change in a significant way either across seasons or months. OHTs contributed significantly to the immature population when compared to wells and other breeding habitats of the study site. The habitat positivity of wells and OHTs was significantly associated with the presence of aquatic organisms, organic matter and algal remnants. Significant correlations of malaria prevalence with monthly immature density, as well as number of breeding habitats with immature vector mosquitoes, were also observed. CONCLUSIONS: The findings that OHTs showed fairly high and consistent immature density of An. stephensi irrespective of seasons indicates the potentiality of the breeding habitat in contributing to vector density. The correlation between vector breeding habitats, immature density and malaria prevalence indicates the proximity of these habitats to malaria cases, proving its role in vector abundance and local malaria transmission. The preference of An. stephensi to breed in OHTs calls for intensified, appropriate and sustained intervention measures to curtail vector breeding and propagation to shrink malaria to pre-elimination level and beyond.


Assuntos
Anopheles/crescimento & desenvolvimento , Cruzamento , Ecossistema , Mosquitos Vetores/crescimento & desenvolvimento , Água/parasitologia , Animais , Cidades , Humanos , Índia , Estudos Longitudinais
14.
Malar J ; 15: 67, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26852118

RESUMO

BACKGROUND: Reactive case detection (RCD) for malaria is a strategy to identify additional malaria infections in areas of low malaria transmission and can complement passive surveillance. This study describes experiences with RCD in two Indian sites, and aimed to synthesize experiences with RCD across endemic countries. METHODS: RCD programmes were piloted in two urban areas of India with a low prevalence of mainly Plasmodium vivax malaria in 2014. Cases were identified in a clinic by microscopy and contacts were screened within 2 weeks; PCR, in addition to microscopy, was used to detect Plasmodium parasites. A systematic review was conducted to identify RCD experiences in the literature. RESULTS: In Chennai, 868 contacts were enrolled for 18 index cases of clinical malaria; in Nadiad, 131 contacts were enrolled for 20 index cases. No new malaria infections were detected in Nadiad among contacts, and four new infections were detected in Chennai (three P. vivax and one Plasmodium falciparum), of which two were among household members of index cases. An additional five studies describing results from an RCD strategy were identified in the literature: four in Africa and one in Thailand. Including the results from India, the average number of contacts screened per index case in a total of seven studies ranged from four to 50, and 126 in a case study in Thailand with one index case. Malaria was detected in 0-45 % of the contacted persons. The average number of index cases needed to be traced to find one new case of malaria ranged from one to five, and could not be assessed in one study in India (no contacts positive for 20 cases). Sharing the household with an index case was associated with a five-fold increased risk of malaria compared to contacts from households without an index case (pooled risk ratio 5.29, 95 % CI 3.31-8.47, I(2) 0 %, four studies). CONCLUSIONS: RCD in areas of low malaria transmission is a labour-intensive strategy, and its benefit is not clear. Studies are needed to assess how RCD can be optimized or into alternatives where interventions are targeted to family members or hotspots.


Assuntos
Malária/prevenção & controle , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Índia , Lactente , Malária/epidemiologia , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Pessoa de Meia-Idade , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Adulto Jovem
15.
J Med Entomol ; 53(2): 315-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747858

RESUMO

Knockdown resistance (kdr) in insects resulting from mutation(s) in the voltage-gated sodium channel (VGSC) gene is one of the mechanisms of resistance against DDT and the pyrethroid group of insecticides. Earlier, we reported the presence of two classic kdr mutations, i.e., L1014F and L1014S in Anopheles stephensi Liston, a major Indian malaria vector affecting mainly urban areas. This report presents the distribution of these alleles in different An. stephensi populations. Seven populations of An. stephensi from six states of India were screened for the presence of two alternative kdr mutations L1014F and L1014S using allele-specific polymerase chain reaction assays. We recorded the presence of both kdr mutations in northern Indian populations (Alwar and Gurgaon), with the preponderance of L1014S, whereas only L1014F was present in Raipur (central India) and Chennai (southern India). None of the kdr mutations were found in Ranchi in eastern India and in Mangaluru and Mysuru in southern India. This study provides evidence for a focal pattern of distribution of kdr alleles in India.


Assuntos
Anopheles/genética , Resistência a Inseticidas/genética , Alelos , Animais , Feminino , Índia , Mutação
16.
Regul Toxicol Pharmacol ; 79: 91-102, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27181453

RESUMO

The acceptable daily intake (ADI) of commercially available steviol glycosides is currently 0-4 mg/kg body weight (bw)/day, based on application of a 100-fold uncertainty factor to a no-observed-adverse-effect-level value from a chronic rat study. Within the 100-fold uncertainty factor is a 10-fold uncertainty factor to account for inter-species differences in toxicokinetics (4-fold) and toxicodynamics (2.5-fold). Single dose pharmacokinetics of stevioside were studied in rats (40 and 1000 mg/kg bw) and in male human subjects (40 mg/kg bw) to generate a chemical-specific, inter-species toxicokinetic adjustment factor. Tmax values for steviol were at ∼8 and ∼20 h after administration in rats and humans, respectively. Peak concentrations of steviol were similar in rats and humans, while steviol glucuronide concentrations were significantly higher in humans. Glucuronidation in rats was not saturated over the dose range 40-1000 mg/kg bw. The AUC0-last for steviol was approximately 2.8-fold greater in humans compared to rats. Chemical-specific adjustment factors for extrapolating toxicokinetics from rat to human of 1 and 2.8 were established based on Cmax and AUC0-last data respectively. Because these factors are lower than the default value of 4.0, a higher ADI for steviol glycosides of between 6 and 16 mg/kg bw/d is justified.


Assuntos
Diterpenos do Tipo Caurano/farmacocinética , Diterpenos do Tipo Caurano/toxicidade , Glucosídeos/farmacocinética , Glucosídeos/toxicidade , Nível de Efeito Adverso não Observado , Edulcorantes/farmacocinética , Edulcorantes/toxicidade , Testes de Toxicidade/métodos , Toxicocinética , Adulto , Animais , Área Sob a Curva , Biotransformação , Diterpenos do Tipo Caurano/sangue , Relação Dose-Resposta a Droga , Feminino , Glucosídeos/sangue , Glucuronídeos/farmacocinética , Meia-Vida , Humanos , Hidrólise , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Medição de Risco , Especificidade da Espécie , Incerteza , Adulto Jovem
18.
J Vector Borne Dis ; 52(3): 224-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26418653

RESUMO

BACKGROUND & OBJECTIVES: Aedes mosquito control has gained much importance nowadays in view of rise in number of reported cases of dengue and chikungunya in India and other countries. In the present study, C21 attracticide (containing a pheromone and an insect growth regulator­IGR, developed by Defence Research and Development Establishment (DRDE), Gwalior, India was tested for its feasibility for surveillance and control of Aedes mosquito in a multicentric mode from October 2007 to June 2012 in urban (Delhi, and Bengaluru district, Karnataka) and suburban (Alappuzha district, Kerala) settings of the country in three phases. METHODS: Across the randomly selected households in each study area, two to four containers treated with attracticide (experimental) and untreated (control) were placed and monitored by trained surveillance workers on weekly/ fortnightly basis for determining the presence of eggs, larvae and pupae. Container positivity, percent larvae, egg and pupae collected were determined during different phases and analyzed statistically using SPSS 18.0. RESULTS: Container positivity was found statistically significant at Bengaluru and Alappuzha, Kerala while in Delhi, it was found non-significant. Eggs collected from experimental containers were significantly higher in comparison to control at all the locations except Delhi. Also larvae collected from control containers were significantly higher at all the locations except Bengaluru. Pupae collected from control containers remained significantly higher at all the locations as no pupal formation was recorded from experimental containers. INTERPRETATION & CONCLUSION: The use of C21 attracticide hampered pupal formation, thus inhibiting adult population in the study areas. The study established that C21 attracticide was efficacious in the field conditions and has potential for use in surveillance and management of dengue and chikungunya mosquitoes.


Assuntos
Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Insetos Vetores , Hormônios Juvenis/administração & dosagem , Controle de Mosquitos/métodos , Feromônios/administração & dosagem , Atrativos Sexuais/administração & dosagem , Animais , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/transmissão , Dengue/prevenção & controle , Dengue/transmissão , Feminino , Índia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Distribuição Aleatória
19.
Malar J ; 13: 129, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24685286

RESUMO

BACKGROUND: Assessing the Plasmodium vivax burden in India is complicated by the potential threat of an emerging chloroquine (CQ) resistant parasite population from neighbouring countries in Southeast Asia. Chennai, the capital of Tamil Nadu and an urban setting for P. vivax in southern India, was selected as a sentinel site for investigating CQ efficacy and sensitivity in vivax malaria. METHODS: CQ efficacy was evaluated with a 28-day in vivo therapeutic study, while CQ sensitivity was measured with an in vitro drug susceptibility assay. In both studies, isolates also underwent molecular genotyping to investigate correlations between parasite diversity and drug susceptibility to CQ. Molecular genotyping included sequencing a 604 base pair (bp) fragment of the P. vivax multidrug resistant gene-1 (Pvmdr1) for single nucleotide polymorphisms (SNPs) and also the amplification of eight microsatellite (MS) loci located across the genome on eight different chromosomes. RESULTS: In the 28-day in vivo study (N=125), all subjects were aparasitaemic by Day 14. Passive case surveillance continuing beyond Day 28 in 22 subjects exposed 17 recurrent infections, which ranged from 44 to 148 days post-enrollment. Pvmdr1 sequencing of these recurrent infections revealed that 93.3% had identical mutant haplotypes (958M/Y976/1076L) to their baseline Day 0 infection. MS genotyping further revealed that nine infection pairs were related with ≥ 75% haplotype similarity (same allele at six or more loci). To test the impact of this mutation on CQ efficacy, an in vitro drug assay (N=68) was performed. No correlation between IC50 values and the percentage of ring-stage parasites prior to culture was observed (r(sadj): -0.00063, p = 0.3307) and the distribution of alleles among the Pvmdr1 SNPs and MS haplotypes showed no significant associations with IC50 values. CONCLUSIONS: Plasmodium vivax was found to be susceptible to CQ drug treatment in both the in vivo therapeutic drug study and the in vitro drug assay. Though the mutant 1076 L of Pvmdr1 was found in a majority of isolates tested, this single mutation did not associate with CQ resistance. MS haplotypes revealed strong heterogeneity in this population, indicating a low probability of reinfection with highly related haplotypes.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Resistência a Medicamentos , Malária Vivax/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Testes de Sensibilidade Parasitária , Polimorfismo Genético , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Adulto Jovem
20.
Parasit Vectors ; 17(1): 134, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491547

RESUMO

BACKGROUND: The global temperature has significantly risen in the past century. Studies have indicated that higher temperature intensifies malaria transmission in tropical and temperate countries. Temperature fluctuations will have a potential impact on parasite development in the vector Anopheles mosquito. METHODS: Year-long microclimate temperatures were recorded from a malaria-endemic area, Chennai, India, from September 2021 to August 2022. HOBO data loggers were placed in different vector resting sites including indoor and outdoor roof types. Downloaded temperatures were categorised by season, and the mean temperature was compared with data from the same study area recorded from November 2012 to October 2013. The extrinsic incubation period for Plasmodium falciparum and P. vivax was calculated from longitudinal temperatures recorded during both periods. Vector surveillance was also carried out in the area during the summer season. RESULTS: In general, temperature and daily temperature range (DTR) have increased significantly compared to the 2012-2013 data, especially the DTR of indoor asbestos structures, from 4.30 â„ƒ to 12.62 â„ƒ in 2021-2022, unlike the marginal increase observed in thatched and concrete structures. Likewise, the average DTR of outdoor asbestos structures increased from 5.02 â„ƒ (2012-2013) to 8.76 â„ƒ (2021-2022) although the increase was marginal in thatched structures and, surprisingly, showed no such changes in concrete structures. The key finding of the extrinsic incubation period (EIP) is that a decreasing trend was observed in 2021-2022 compared to 2012-2013, mainly in indoor asbestos structures from 7.01 to 6.35 days, which negatively correlated with the current observation of an increase in temperature. Vector surveillance undertaken in the summer season revealed the presence of Anopheles breeding in various habitats. Anopheles stephensi could be collected using CDC light traps along with other mosquito species. CONCLUSION: The microclimate temperature has increased significantly over the years, and mosquitoes are gradually adapting to this rising temperature. Temperature negatively correlates with the extrinsic incubation period of the parasite. As the temperature increases, the development of the parasite in An. stephensi will be faster because of a decrease in EIP, thus requiring relatively fewer days, posing a risk for disease transmission and a hindrance to malaria elimination efforts.


Assuntos
Anopheles , Amianto , Malária Vivax , Malária , Parasitos , Animais , Temperatura , Mudança Climática , Biodiversidade , Período de Incubação de Doenças Infecciosas , Índia/epidemiologia , Malária Vivax/parasitologia , Mosquitos Vetores/parasitologia , Anopheles/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA