Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(1): 333-341, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117480

RESUMO

The envisaged future dihydrogen (H2) economy requires a H2 gas grid as well as large deep underground stores. However, the consequences of an unintended spread of H2 through leaky pipes, wells, or subterranean gas migrations on groundwater resources and their ecosystems are poorly understood. Therefore, we emulated a short-term leakage incident by injecting gaseous H2 into a shallow aquifer at the TestUM test site and monitored the subsequent biogeochemical processes in the groundwater system. At elevated H2 concentrations, an increase in acetate concentrations and a decrease in microbial α-diversity with a concomitant change in microbial ß-diversity were observed. Additionally, microbial H2 oxidation was indicated by temporally higher abundances of taxa known for aerobic or anaerobic H2 oxidation. After H2 concentrations diminished below the detection limit, α- and ß-diversity approached baseline values. In summary, the emulated H2 leakage resulted in a temporally limited change of the groundwater microbiome and associated geochemical conditions due to the intermediate growth of H2 consumers. The results confirm the general assumption that H2, being an excellent energy and electron source for many microorganisms, is quickly microbiologically consumed in the environment after a leakage.


Assuntos
Água Subterrânea , Microbiota , Água Subterrânea/química , Hidrogênio , Oxirredução
2.
Environ Sci Technol ; 56(14): 10084-10094, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35786861

RESUMO

The effects of rising groundwater temperatures on zerovalent iron (ZVI)-based remediation techniques will be critical in accelerating chlorinated hydrocarbon (CHC) degradation and side reactions. Therefore, tetrachloroethylene (PCE) degradation with three ZVIs widely used in permeable reactive barriers (Gotthart-Maier cast iron [GM], Peerless cast iron [PL], and ISPAT sponge iron [IS]) was evaluated at 10-70 °C in deionized water. From 10 to 70 °C, PCE degradation half-lives decreased from 25 ± 2 to 0.9 ± 0.1 h (PL), 24 ± 3 to 0.7 ± 0.1 h (GM), and 2.5 ± 0.01 to 0.3 ± 0.005 h (IS). Trichloroethylene (TCE) degradation half-lives at PL and GM decreased from 14.3 ± 3 to 0.2 ± 0.1 h (PL) and 7.6 ± 2 to 0.4 ± 0.1 h (GM). This acceleration of CHC degradation and the stronger shift toward reductive ß-elimination reduced the concentration of potentially harmful metabolites with increasing temperatures. PCE and TCE degradation yields an activation energy of 28 (IS), 58 and 40 kJ mol-1 (GM), and 62 and 53 kJ mol-1 (PL). Hydrogen gas production by ZVI corrosion increased by 3 orders of magnitude from 10 to 70 °C, and an increased chance of gas clogging was observed at high temperatures.


Assuntos
Tetracloroetileno , Tricloroetileno , Poluentes Químicos da Água , Ferro , Temperatura , Água
3.
Phys Rev Lett ; 127(7): 072001, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459622

RESUMO

We present predictions for the gluon-fusion Higgs p_{T} spectrum at third resummed and fixed order (N^{3}LL^{'}+N^{3}LO) including fiducial cuts as required by experimental measurements at the Large Hadron Collider. Integrating the spectrum, we predict for the first time the total fiducial cross section to third order (N^{3}LO) and improved by resummation. The N^{3}LO correction is enhanced by cut-induced logarithmic effects and is not reproduced by the inclusive N^{3}LO correction times a lower-order acceptance. These are the highest-order predictions of their kind achieved so far at a hadron collider.

4.
Environ Sci Technol ; 55(12): 8010-8019, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34060824

RESUMO

Increasing groundwater temperatures caused by global warming, subsurface infrastructure, or heat storage projects may interfere with groundwater remediation techniques using zero-valent iron (ZVI) technology by accelerating anaerobic corrosion. The corrosion behavior of three ZVIs widely used in permeable reactive barriers (PRBs), Peerless cast iron (PL), Gotthart-Maier cast iron (GM), and an ISPAT iron sponge (IS), was investigated at temperatures between 25 and 70 °C in half-open batch reactors by measuring the volume of hydrogen gas generated. Initially, the corrosion rates of all tested ZVIs increased with temperature; at temperatures ≤40 °C, a material-specific steady state is reached, and at temperatures >40 °C, passivation causes a decrease in long-term corrosion rates. The observed corrosion behavior was therefore assumed to be superimposed by accelerating and inhibiting effects, caused by surface precipitates where the fitting of measured corrosion rates by a modeling approach, using the corroded amount of Fe0 to account for passivating minerals, yields intrinsic activation energies (Ea, ZVI) of 81, 90, and 107 kJ mol-1 for IS, GM, and PL, respectively. An increase in H2 production might not be directly transferable to an increase in general ZVI reactivity; however, the results suggest that an increase in chlorinated hydrocarbon degradation rates can be expected for ZVI-PRBs in the immediate vicinity of low-temperature underground thermal energy storages (UTESs) or in the impact areas of high-temperature UTES with temperatures of ≤40 °C.


Assuntos
Ferro , Poluentes Químicos da Água , Anaerobiose , Corrosão , Temperatura , Poluentes Químicos da Água/análise
5.
J Org Chem ; 85(1): 142-149, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31682122

RESUMO

Donor-acceptor (D-A) dyes constitute one of the fundamental structural motifs of functional organic materials. In most cases, the donor and acceptor moieties are connected by a single bond, which could potentially be replaced by a fused aromatic ring to enhance the rigidity and conjugation of the dye moieties. However, there is still a lack of synthetic methodologies for such fused D-A systems. Here we report the synthesis of D-A and A-D-A dyes that possess fully annulated donor and acceptor moieties based on palladium (Pd)-catalyzed [3+2] annulation reaction between bromo-chloro-naphthalene dicarboximide and thiophene- and indole-based boronic esters. Thus, a series of fused D-A and A-D-A conjugated dyes were synthesized in good to high yields by a cascade of Pd-catalyzed Suzuki-Miyaura cross-coupling and direct arylation reactions. The newly synthesized fused D-A and A-D-A dyes with one or two naphthalimide units fused to five-membered electron-rich heterocyles were systematically investigated by ultraviolet-visible spectroscopy, cyclic and square wave voltammetry, and density functional theory calculations. These dyes possess desirable optical and electrochemical properties for application as organic electronic materials as they show absorption up to the near-infrared region, undergo up to 4-fold reduction processes, and have low-lying LUMO energy levels down to -3.62 eV.

6.
Environ Sci Technol ; 52(8): 4937-4949, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29527891

RESUMO

Hydrogen storage in geological formations is one of the most promising technologies for balancing major fluctuations between energy supply from renewable energy plants and energy demand of customers. If hydrogen gas is stored in a porous medium or if it leaks into a shallow aquifer, redox reactions can oxidize hydrogen and reduce electron acceptors such as nitrate, FeIII and MnIV (hydro)oxides, sulfate, and carbonate. These reactions are of key significance, because they can cause unintentional losses in hydrogen stored in porous media and they also can cause unwanted changes in the composition of protected potable groundwater. To represent an aquifer environment enclosing a hydrogen plume, laboratory experiments using sediment-filled columns were constructed and percolated by groundwater in equilibrium with high (2-15 bar) hydrogen partial pressures. Here, we show that hydrogen is consumed rapidly in these experiments via sulfate reduction (18 ± 5 µM h-1) and acetate production (0.030 ± 0.006 h-1), while no methanogenesis took place. The observed reaction rates were independent from the partial pressure of hydrogen and hydrogen consumption only stopped in supplemental microcosm experiments where salinity was increased above 35 g L-1. The outcomes presented here are implemented for planning the sustainable use of the subsurface space within the ANGUS+ project.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Compostos Férricos , Hidrogênio , Oxirredução , Sulfatos
7.
J Contam Hydrol ; 258: 104236, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37660464

RESUMO

We report on the potential of elevated groundwater temperatures and zero-valent iron permeable reactive barriers (ZVI PRBs), for example, through a combination with underground thermal energy storage (UTES), to achieve enhanced remediation of chlorinated hydrocarbon (CHC) contaminated groundwater. Building on earlier findings concerning deionized solutions, we created a database for mineralized groundwater based on temperature dependence of tetrachloroethylene (PCE) degradation using two popular ZVIs (i.e., Gotthart-Maier cast iron [GM] and ISPAT sponge iron [IS]) in column experiments at 25 °C-70 °C to establish a temperature-dependent ZVI PRB dimensioning approach. Scenario analysis revealed that a heated ZVI PRB system in a moderate temperature range up to 40 °C showed the greatest efficiency, with potential material savings of ~55% to 75%, compared to 10 °C, considering manageability and longevity. With a 25 °C-70 °C temperature increase, rate coefficients of PCE degradation increased from 0.4 ± 0.0 h-1 to 2.9 ± 2.2 h-1 (GM) and 0.1 ± 0.1 h-1 to 1.8 ± 0.0 h-1 (IS), while TCE rate coefficients increased from 0.6 ± 0.1 h-1 to 5.1 ± 3.9 h-1 at GM. Activation energies for PCE degradation yielded 32 kJ mol-1 (GM) and 56 kJ mol-1 (IS). Temperature-dependent anaerobic iron corrosion was key in regulating mineral precipitation and passivation of the iron surface as well as porosity reduction due to gas production.


Assuntos
Água Subterrânea , Hidrocarbonetos Clorados , Tetracloroetileno , Poluentes Químicos da Água , Temperatura , Ferro , Temperatura Alta
8.
J Contam Hydrol ; 90(1-2): 58-80, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17113680

RESUMO

Zero-valent iron (ZVI) permeable reactive barriers (PRBs) have become popular for the degradation of chlorinated ethenes (CEs) in groundwater. However, a knowledge gap exists pertaining to the longevity of ZVI. The present investigation addresses this situation by suggesting a numerical simulation model that is intended to be used in conjunction with field or column tests in order to describe long-term ZVI performance at individual sites. As ZVI aging processes are not yet completely understood and are still subject to research, we propose a phenomenological modelling technique instead of a common process-based approach. We describe ZVI aging by parameters that characterise the extent and rate of ZVI reactivity change depending on the propagation of the precipitation front through ZVI. We approximate degradation of CEs by pseudo-first order kinetics accounting for the formation of partially dechlorinated products, and describe ZVI reactivity change by scaling the degradation rate constants. Three independent modelling studies were carried out to test the suitability of the conceptual and numerical model to describe the observations of accelerated column tests. All three tests indicated that ZVI reactivity declined with an increasing number of exchanged pore volumes. Measured and modelled concentrations showed good agreement, thereby proving that resolving spatial as well as temporal changes in ZVI reactivity is reasonable.


Assuntos
Ferro/química , Modelos Teóricos , Purificação da Água , Biodegradação Ambiental , Calibragem , Cromatografia , Simulação por Computador , Teste de Materiais/métodos , Oxirredução , Permeabilidade , Porosidade , Tempo , Fatores de Tempo , Poluentes Químicos da Água/metabolismo , Purificação da Água/instrumentação
9.
Environ Sci Technol ; 41(1): 291-6, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17265961

RESUMO

The effect of different concentrations of total inorganic carbon (TIC) and flow rates on the reactivity of iron metal with trichloroethylene (TCE) was studied in column experiments to verify whether concentration or mass flux of TIC is the major key parameter for barrier performance. First-order rate coefficients (kobs) for TCE degradation vary initially between 0.15 and 0.32 h-' and are positively related to TIC influent concentration. Maximal kobs were reached after 164 and 591 PV, varied between 0.55 and 1.1 h(-1), and were positively correlated to the TIC mass flux, followed by a decrease resulting in values similar to the reference system at the end of the experiments. Enhancement of iron corrosion (0.7 to 3.5 mmol kgFe(-1) d(-1) and formation of gas bubbles during the initial experimental phase were observed and were also positively correlated to TIC mass flux. The higher gas bubble formation probably has a more significant effect on porosity than mineral precipitations in Fe0-systems. The results suggest that higher TIC mass fluxes cause a more pronounced acceleration in CHC degradation, but also a faster inhibition in the longer-term. This faster inhibition has serious implication for the design of funnel and gate systems.


Assuntos
Carbonatos/química , Ferro/química , Tricloroetileno/química , Poluição da Água/prevenção & controle , Cinética
10.
Environ Sci Technol ; 40(6): 2004-10, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16570628

RESUMO

Multiple column experiments were performed using two commercial iron materials to evaluate the necessity and usefulness of preliminary investigations in permeable reactive barrier (PRB) design for chlorinated organics. Experiments were performed with contaminated groundwater and involved fresh iron granules or altered iron material excavated from PRBs. The determination of first-order rate coefficients by global nonlinear least-squares fittings indicated a variability in rate coefficients on 1 or 2 orders of magnitude. Geometric mean values of surface area normalized rate coefficients (in 10(-5) L m(-2) h(-1)) for fresh gray cast iron and iron sponge, respectively, are: tetrachloroethene (4.5, 2.6), trichloroethene (8.1, 3.3), cis-1,2-dichloroethene (3.1, 2.9), trans-1,2-dichloroethene (9.5, 5.3), 1,1-dichloroethene (4.0, 4.4), and vinyl chloride (1.6, 6.1). The increasing rate coefficients with decreasing grade of chlorination, which characterize degradation at iron sponge are linearly related to diffusion coefficients in water, suggesting diffusion limitation in the degradation process for this particular material, possibly due to a high inner surface. The variability in rate coefficients seems to be too high to use mean rate coefficients from published studies in the design procedure of PRBs, and variabilities cannot be related to groundwater characteristics, waterflow through the reactive cells, or secondary corrosion reactions.


Assuntos
Hidrocarbonetos Clorados/análise , Ferro/química , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Abastecimento de Água , Dicloroetilenos/análise , Dicloroetilenos/química , Difusão , Monitoramento Ambiental , Hidrocarbonetos Clorados/química , Concentração de Íons de Hidrogênio , Cinética , Permeabilidade , Tetracloroetileno/análise , Tetracloroetileno/química , Tricloroetileno/análise , Tricloroetileno/química , Cloreto de Vinil/análise , Cloreto de Vinil/química
11.
Environ Sci Technol ; 39(19): 7650-5, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16245839

RESUMO

The bulk of arsenic (As) at contaminated sites is frequently associated with iron (hydr)oxides. Various studies ascribe increasing dissolved As concentrations to the transformation of iron (hydr)oxides into iron sulfides, which is initiated by dissolved sulfide. We investigated whetherthis processes can be utilized as a source treatment approach using compost-based permeable reactive barriers (PRB), which promote microbial sulfate reduction. Arsenic-bearing aquifer sedimentfrom a contaminated industrial site showed a decrease in As content of <10% after 420 days of percolation with sulfide-free artificial groundwater. In contrast, water that had previously passed through organic matter and exhibited sulfide concentrations of 10-30 mg/L decreased As content in the sediment by 87% within 360 days. X-ray diffraction showed no arsenic sulfides, but XANES spectra (X-ray absorption near edge structure) and associated linear combinations revealed that adsorbed arsenate of the original sediment was in part reduced to arsenite and indicated the formation of minor amounts of a substance that contains As and sulfur. The speciation of dissolved As changed from initially As(V)-dominated to As(III)-dominated after sulfide flushing was started, which increases the mobility of As. Because sulfide can be supplied not only by compost-based PRBs but also by direct injection, sulfide flushing has a wide range of application for the source treatment of arsenic.


Assuntos
Arsênio/química , Poluentes Ambientais/análise , Poluição Ambiental/prevenção & controle , Água Doce/química , Sedimentos Geológicos/análise , Solo/análise , Movimentos da Água , Adsorção , Arsênio/análise , Compostos Férricos/química , Análise Espectral/métodos , Sulfetos/análise , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA