Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203232

RESUMO

Currently, there is no viable option for fertility preservation in prepubertal boys. Experimentally, controlled vitrification of testicular tissue has been evaluated and found to cause potential structural damage to the spermatogonial stem cell (SSC) niche during cryopreservation. In this report, we leveraged the regenerative effect of human umbilical cord-derived Mesenchymal stem cell exosomes (h-UCMSC-Exo) to protect against testicular damage from the cytotoxic effects of polychemotherapy (CTX). A chemotherapy-induced testicular dysfunctional model was established by CTX treatment with cyclophosphamide and Busulfan in vitro (human Sertoli cells) and in prepubescent mice. We assessed the effects of the exosomes by analyzing cell proliferation assays, molecular analysis, immunohistochemistry, body weight change, serum hormone levels, and fertility rate. Our data indicates the protective effect of h-UCMSC-Exo by preserving the SSC niche and preventing testicular damage in mice. Interestingly, mice that received multiple injections of h-UCMSC-Exo showed significantly higher fertility rates and serum testosterone levels (p < 0.01). Our study demonstrates that h-UCMSC-Exo can potentially be a novel fertility protection approach in prepubertal boys triaged for chemotherapy treatment.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Masculino , Humanos , Animais , Camundongos , Quimioterapia Combinada , Fertilidade , Espermatogônias
2.
Placenta ; 145: 65-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096686

RESUMO

INTRODUCTION: Preeclampsia (PE) is a serious hypertensive pregnancy disorder and a leading cause of maternal and perinatal morbidity and mortality. Despite the prevalence and complications, there are no approved therapeutics to relieve PE symptoms. Inflammation, oxidative stress, and angiogenic imbalance have been shown to contribute to the PE pathophysiology, though there is a lack of understanding in how best to target these pathways in PE. We recently demonstrated that the bioflavonoid luteolin is a potent inhibitor of the anti-angiogenic and pro-hypertensive soluble fms-like tyrosine kinase 1 (sFlt-1), and here we aimed to determine if luteolin was also capable of reducing inflammation and oxidative stress pathways. METHODS: Tumor necrosis factor (TNF)-α, which is upregulated in PE, was utilized to stimulate these pathways in human placental explants and endothelial cells. Endothelin-1 (ET-1) and interleukin (IL)-6 in the media from explants and cells were measured via ELISA, and NF-κB localization and reactive oxygen species were detected via fluorescence microscopy. RESULTS: Pretreatment with luteolin demonstrated significant reductions in NF-κB activation, reactive oxygen species, superoxide, and IL-6 and ET-1 expression in endothelial cells. We also saw a significant reduction in phosphorylation of NF-κB in human placental explants. DISCUSSION: These data demonstrate that luteolin inhibits pathways implicated in the development of PE and should be explored further for its potential as a PE therapeutic.


Assuntos
Hipertensão , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , NF-kappa B/metabolismo , Placenta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Luteolina/farmacologia , Luteolina/metabolismo , Células Endoteliais/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Inflamação/metabolismo
3.
Nat Commun ; 15(1): 2751, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553499

RESUMO

Influenza virus activates cellular inflammasome pathways, which can be both beneficial and detrimental to infection outcomes. Here, we investigate the function of the inflammasome-activated, pore-forming protein gasdermin D (GSDMD) during infection. Ablation of GSDMD in knockout (KO) mice (Gsdmd-/-) significantly attenuates influenza virus-induced weight loss, lung dysfunction, lung histopathology, and mortality compared with wild type (WT) mice, despite similar viral loads. Infected Gsdmd-/- mice exhibit decreased inflammatory gene signatures shown by lung transcriptomics. Among these, diminished neutrophil gene activation signatures are corroborated by decreased detection of neutrophil elastase and myeloperoxidase in KO mouse lungs. Indeed, directly infected neutrophils are observed in vivo and infection of neutrophils in vitro induces release of DNA and tissue-damaging enzymes that is largely dependent on GSDMD. Neutrophil depletion in infected WT mice recapitulates the reductions in mortality, lung inflammation, and lung dysfunction observed in Gsdmd-/- animals, while depletion does not have additive protective effects in Gsdmd-/- mice. These findings implicate a function for GSDMD in promoting lung neutrophil responses that amplify influenza virus-induced inflammation and pathogenesis. Targeting the GSDMD/neutrophil axis may provide a therapeutic avenue for treating severe influenza.


Assuntos
Neutrófilos , Orthomyxoviridae , Animais , Camundongos , Neutrófilos/metabolismo , Gasderminas , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Orthomyxoviridae/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA