Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Glob Chang Biol ; 24(1): e80-e89, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28727210

RESUMO

Recent decades have seen profound changes in species abundance and community composition. In the marine environment, the major anthropogenic drivers of change comprise exploitation, invasion by nonindigenous species, and climate change. However, the magnitude of these stressors has been widely debated and we lack empirical estimates of their relative importance. In this study, we focused on Eastern Mediterranean, a region exposed to an invasion of species of Red Sea origin, extreme climate change, and high fishing pressure. We estimated changes in fish abundance using two fish trawl surveys spanning a 20-year period, and correlated these changes with estimated sensitivity of species to the different stressors. We estimated sensitivity to invasion using the trait similarity between indigenous and nonindigenous species; sensitivity to fishing using a published composite index based on the species' life-history; and sensitivity to climate change using species climatic affinity based on occurrence data. Using both a meta-analytical method and random forest analysis, we found that for shallow-water species the most important driver of population size changes is sensitivity to climate change. Species with an affinity to warm climates increased in relative abundance and species with an affinity to cold climates decreased suggesting a strong response to warming local sea temperatures over recent decades. This decrease in the abundance of cold-water-associated species at the trailing "warm" end of their distribution has been rarely documented. Despite the immense biomass of nonindigenous species and the presumed high fishing pressure, these two latter factors seem to have only a minor role in explaining abundance changes. The decline in abundance of indigenous species of cold-water origin indicates a future major restructuring of fish communities in the Mediterranean in response to the ongoing warming, with unknown impacts on ecosystem function.


Assuntos
Adaptação Fisiológica , Mudança Climática , Ecossistema , Peixes/fisiologia , Temperatura , Distribuição Animal , Animais , Peixes/classificação , Oceano Índico , Mar Mediterrâneo
2.
Biol Lett ; 13(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28747531

RESUMO

The Mediterranean Sea is an invasion hotspot, with non-indigenous species suspected to be a major driver behind community changes. We used size spectra, a reliable index of food web structure, to examine how the influx of Red Sea fishes into the Mediterranean Sea has impacted the indigenous species community. This is the first attempt to use changes in the size spectra to reveal the effect of biological invasions. We used data from trawl catches along Israel's shoreline spanning 20 years to estimate changes in the community size spectra of both indigenous and non-indigenous species. We found that the relative biomass of non-indigenous species increased over the 20 years, especially for small and large species, leading to a convergence with the indigenous species size spectra. Hence, the biomass of indigenous and non-indigenous species has become identical for all size classes, suggesting similar energetic constraints and sensitivities to fishing. However, over this time period the size spectrum of indigenous species has remained remarkably constant. This suggests that the wide-scale invasion of non-indigenous species into the Mediterranean may have had little impact on the community structure of indigenous species.


Assuntos
Cadeia Alimentar , Animais , Ecossistema , Peixes , Oceano Índico , Mar Mediterrâneo
3.
Sci Total Environ ; 922: 171275, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428599

RESUMO

With mounting global concerns about jellyfish outbreaks, monitoring their occurrence remains challenging. Tapping into the wealth of digital data that internet users share online, which includes reports of jellyfish sightings, may provide an alternative or complement to more conventional expert-based or citizen science monitoring. Here, we explore digital footprints as a data source to monitor jellyfish outbreaks along the Israeli Mediterranean coast. We compiled jellyfish sighting data for the period 2011-2022 from multiple platforms, including leading social media platforms, searches in the Google search engine, and Wikipedia page views. Employing time series analysis, cross-correlation, and various evaluation metrics for presence/absence data, we compared weekly data from three sources: digital footprints, citizen science, and traditional expert-based field monitoring. Consistent seasonal patterns emerge across datasets, with notable correlations, particularly in jellyfish abundance. The cross-correlation between digital footprint and citizen science data exceeds >0.7, with Twitter and Instagram showing the highest correlation. Citizen science data often precedes digital footprints by up to one week. Correlation with traditional, expert-based field monitoring is limited as a result of limited data availability. Digital footprints demonstrate substantial agreement with the other data sources regarding jellyfish presence/absence and major outbreaks, especially for data from Wikipedia, Twitter, and Instagram. Overall, we highlight digital footprint data as a reliable, cost-effective tool for passive monitoring of jellyfish outbreaks, which can aid characterization in data-scarce coastal regions, including retrospective assessment. Transferring and scaling up the proposed approach should consider data accessibility as well as platform relative popularity and usage in the regions under investigation.


Assuntos
Cnidários , Cifozoários , Animais , Humanos , Israel , Estudos Retrospectivos , Surtos de Doenças
4.
Sci Total Environ ; 688: 976-982, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31726580

RESUMO

Managing invasive alien species is particularly challenging in the ocean mainly because marine ecosystems are highly connected across broad spatial scales. Eradication of marine invasive species has only been achieved when species were detected early, and management responded rapidly. Generalized approaches, transferable across marine regions, for prioritizing actions to control invasive populations are currently lacking. Here, expert knowledge was elicited to prioritize 11 management actions for controlling 12 model species, distinguished by differences in dispersion capacity, distribution in the area to be managed, and taxonomic identity. Each action was assessed using five criteria (effectiveness, feasibility, acceptability, impacts on native communities, and cost), which were combined in an 'applicability' metric. Raising public awareness and encouraging the commercial use of invasive species were highly prioritized, whereas biological control actions were considered the least applicable. Our findings can guide rapid decision-making on prioritizing management options for the control of invasive species especially at early stages of invasion, when reducing managers' response time is critical.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Espécies Introduzidas , Biodiversidade , Tomada de Decisões
5.
Clin Toxicol (Phila) ; 56(5): 327-331, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28980497

RESUMO

CONTEXT: Plotosus lineatus is a venomous fish that has migrated from the Indo-Pacific region to the Mediterranean Sea (Lessepsian migrant). Its presence in the Mediterranean Sea was first recorded in 2002 and was observed in growing schools. Its spines contain toxins with lytic, hemolytic and edematous activities. OBJECTIVE: To characterize the injuries caused by Plotosus lineatus in the Southeastern Mediterranean Sea. METHODS: A prospective observational case series of consultations provided by a national Poison Center pertaining to Plotosus lineatus from 2007 to 2016. Demographic and clinical data and method of fish identification were retrieved from the medical toxicological records, and described. RESULTS: Eighty four cases were included; the main findings are: median age 35 (range 3-80) years, 91.7% males, 51.2% fishermen, 78.6% palm injuries, 94% and 4.8% were mildly and moderately injured, respectively. Main local manifestations included pain, puncture wound, swelling, and erythema (90.5%, 70.2%, 33.3%, and 16.7%, respectively). Systemic signs were minor and infrequent (≤7.1%), including hypertension, tachycardia, vomiting, chills, and weakness. Management included wound disinfection, immersion in hot water, tetanus prophylaxis, and analgesics. No patient required hospital admission. The fish was identified mostly by the victim with the aid of the Poison Center (mainly by typical description, and a picture), and some by marine biologists. CONCLUSIONS: Plotosus lineatus is a new fish in the Southeastern Mediterranean Sea. It affects fishermen handling fishing nets, and beach hikers stepping on or holding it. Injuries caused by its spines usually result in minor effects; pain may be intense. Treatment includes disinfection, analgesics, and antitetanus and antibiotics as needed. No lethal cases were recorded, unlike exposure of animals to the venom of the Indo-Pacific species; reason is unclear. Our series illustrates the consequences of manmade disruption of ecosystem resulting in invasion of toxic species to a new environment, affecting human health.


Assuntos
Peixes-Gato , Venenos de Peixe/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Feminino , Humanos , Espécies Introduzidas , Masculino , Mar Mediterrâneo , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA