Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(4): 2079-2090, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227957

RESUMO

During the last decades, major progress was made concerning the understanding of subcritical low-pressure adsorption of fluids like nitrogen and argon at their boiling temperatures in nanoporous materials. It was possible to understand how structural properties affect the shape of the adsorption isotherms. However, within the context of gas storage applications, supercritical high-pressure gas adsorption is important. A key feature here is that the experimentally determined surface excess adsorption isotherm may exhibit a characteristic maximum at a certain pressure. For a given temperature and adsorptive/adsorbent system, the surface excess maximum (and the corresponding adsorbed amount) is related to the storage capacity of the adsorbent. However, there is still a lack of understanding of how key textural properties such as surface area and pore size affect details of the shape of supercritical high-pressure adsorption isotherms. To address these open questions, we have performed a systematic experimental study assessing the effect of pore size/structure on the supercritical adsorption isotherms of pure fluids such as C2H4, CO2, and SF6 over a wider range of temperatures and pressures on a series of model materials exhibiting well-defined pore sizes, i.e., ordered micro- and mesoporous materials (e.g., NaY zeolite, KIT-6 silica, and MCM-48 silica). A fundamental result of our experiments is a unique fluid-independent correlation between the pressure of the surface excess maximum pmax (at a given temperature) and the pore size (by taking into account the kinetic diameter of the fluid and the underlying effective attractive fluid-wall interaction). Summarizing, our results suggest important structure-property relationships, allowing one to determine, for given thermodynamic conditions, important information related to the optimal operating conditions for supercritical adsorption applications. The insights may also serve as a basis for optimizing and tailoring the properties of nanoporous adsorbent materials for gas storage applications.

2.
Angew Chem Int Ed Engl ; 61(48): e202212623, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36178733

RESUMO

Aromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate. Crystal structures reveal the high degree of porosity achievable with the new building block. Excellent electrochemical properties and reversible reduction to the tetraanions are shown for the imides; NMR and EPR measurements confirm the global aromaticity of the dianions and evidence the global Baird aromaticity of the tetraanions. Considering the short synthesis and unique properties, we expect widespread use of the new building block in the development of organic materials.

3.
Angew Chem Int Ed Engl ; 59(31): 12958-12964, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32368821

RESUMO

Aromatic organic compounds can be used as electrode materials in rechargeable batteries and are expected to advance the development of both anode and cathode materials for sodium-ion batteries (SIBs). However, most aromatic organic compounds assessed as anode materials in SIBs to date exhibit significant degradation issues under fast-charge/discharge conditions and unsatisfying long-term cycling performance. Now, a molecular design concept is presented for improving the stability of organic compounds for battery electrodes. The molecular design of the investigated compound, [2.2.2.2]paracyclophane-1,9,17,25-tetraene (PCT), can stabilize the neutral state by local aromaticity and the doubly reduced state by global aromaticity, resulting in an anode material with extraordinarily stable cycling performance and outstanding performance under fast-charge/discharge conditions, demonstrating an exciting new path for the development of electrode materials for SIBs and other types of batteries.

4.
Angew Chem Weinheim Bergstr Ger ; 134(48): e202212623, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38504923

RESUMO

Aromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate. Crystal structures reveal the high degree of porosity achievable with the new building block. Excellent electrochemical properties and reversible reduction to the tetraanions are shown for the imides; NMR and EPR measurements confirm the global aromaticity of the dianions and evidence the global Baird aromaticity of the tetraanions. Considering the short synthesis and unique properties, we expect widespread use of the new building block in the development of organic materials.

5.
Front Chem ; 7: 123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915327

RESUMO

Modification of functional groups attached to conjugated polymer backbones can drastically alter the material properties. Oxidation of electron-donating thioalkyl substituents to electron-withdrawing sulfoxides or sulfones is a particularly effective modification. However, so far, this reaction has not been studied for the modification of conjugated polymers used in organic electronics. Crucial questions regarding selectivity and reaction time waited to be addressed. Here, we show that the reaction is highly selective and complete within just a few minutes when using dimethyldioxirane (DMDO) for the oxidation of thioalkyl substituents attached to the well-investigated conjugated polymers poly(9-(1-octylnonyl)carbazole-alt-4,7-dithienylbenzothiadiazole) (PCDTBT) and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT). The selectivity was confirmed by comparison with polymers obtained from pre-oxidized monomers and by control experiments using related polymers without thioalkyl substituents. Using DMDO, the oxidation yields acetone as the only side-product, which reduces the work-up to mere evaporation of solvents and excessive reagent. Our results show that this oxidation is an exciting method for the preparation of electron-deficient conjugated polymers. It may even allow the preparation of electron acceptors for solar cells directly from the electron donors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA