Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 178(5): 1245-1259.e14, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31402174

RESUMO

Small proteins are traditionally overlooked due to computational and experimental difficulties in detecting them. To systematically identify small proteins, we carried out a comparative genomics study on 1,773 human-associated metagenomes from four different body sites. We describe >4,000 conserved protein families, the majority of which are novel; ∼30% of these protein families are predicted to be secreted or transmembrane. Over 90% of the small protein families have no known domain and almost half are not represented in reference genomes. We identify putative housekeeping, mammalian-specific, defense-related, and protein families that are likely to be horizontally transferred. We provide evidence of transcription and translation for a subset of these families. Our study suggests that small proteins are highly abundant and those of the human microbiome, in particular, may perform diverse functions that have not been previously reported.


Assuntos
Microbiota , Proteínas/metabolismo , Sequência de Aminoácidos , Comunicação Celular , Interações Hospedeiro-Patógeno , Humanos , Metagenoma , Fases de Leitura Aberta/genética , Proteínas/química , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Alinhamento de Sequência
2.
Glia ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856187

RESUMO

The creatine-phosphocreatine cycle serves as a crucial temporary energy buffering system in the brain, regulated by brain creatine kinase (CKB), in maintaining Adenosine triphosphate (ATP) levels. Alzheimer's disease (AD) has been linked to increased CKB oxidation and loss of its regulatory function, although specific pathological processes and affected cell types remain unclear. In our study, cerebral cortex samples from individuals with AD, dementia with Lewy bodies (DLB), and age-matched controls were analyzed using antibody-based methods to quantify CKB levels and assess alterations associated with disease processes. Two independently validated antibodies exclusively labeled astrocytes in the human cerebral cortex. Combining immunofluorescence (IF) and mass spectrometry (MS), we explored CKB availability in AD and DLB cases. IF and Western blot analysis demonstrated a loss of CKB immunoreactivity correlated with increased plaque load, severity of tau pathology, and Lewy body pathology. However, transcriptomics data and targeted MS demonstrated unaltered total CKB levels, suggesting posttranslational modifications (PTMs) affecting antibody binding. This aligns with altered efficiency at proteolytic cleavage sites indicated in the targeted MS experiment. These findings highlight that the proper function of astrocytes, understudied in the brain compared with neurons, is highly affected by PTMs. Reduction in ATP levels within astrocytes can disrupt ATP-dependent processes, such as the glutamate-glutamine cycle. As CKB and the creatine-phosphocreatine cycle are important in securing constant ATP availability, PTMs in CKB, and astrocyte dysfunction may disturb homeostasis, driving excitotoxicity in the AD brain. CKB and its activity could be promising biomarkers for monitoring early-stage energy deficits in AD.

3.
Anal Chem ; 95(36): 13649-13658, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639361

RESUMO

Mass spectrometry-based bottom-up proteomics is rapidly evolving and routinely applied in large-scale biomedical studies. Proteases are a central component of every bottom-up proteomics experiment, digesting proteins into peptides. Trypsin has been the most widely applied protease in proteomics due to its characteristics. With ever-larger cohort sizes and possible future clinical application of mass spectrometry-based proteomics, the technical impact of trypsin becomes increasingly relevant. To assess possible biases introduced by trypsin digestion, we evaluated the impact of eight commercially available trypsins in a variety of bottom-up proteomics experiments and across a range of protease concentrations and storage times. To investigate the universal impact of these technical attributes, we included bulk HeLa cell lysate, human plasma, and single HEK293 cells, which were analyzed over a range of selected reaction monitoring (SRM), data-independent acquisition (DIA), and data-dependent acquisition (DDA) instrument methods on three LC-MS instruments. The quantification methods employed encompassed both label-free approaches and absolute quantification utilizing spike-in heavy-labeled recombinant protein fragment standards. Based on this extensive data set, we report variations between commercial trypsins, their source, and their concentration. Furthermore, we provide suggestions on the handling of trypsin in large-scale studies.


Assuntos
Peptídeo Hidrolases , Proteômica , Humanos , Tripsina , Células HEK293 , Células HeLa
4.
Clin Proteomics ; 20(1): 23, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308827

RESUMO

BACKGROUND: Molecular components in blood, such as proteins, are used as biomarkers to detect or predict disease states, guide clinical interventions and aid in the development of therapies. While multiplexing proteomics methods promote discovery of such biomarkers, their translation to clinical use is difficult due to the lack of substantial evidence regarding their reliability as quantifiable indicators of disease state or outcome. To overcome this challenge, a novel orthogonal strategy was developed and used to assess the reliability of biomarkers and analytically corroborate already identified serum biomarkers for Duchenne muscular dystrophy (DMD). DMD is a monogenic incurable disease characterized by progressive muscle damage that currently lacks reliable and specific disease monitoring tools. METHODS: Two technological platforms are used to detect and quantify the biomarkers in 72 longitudinally collected serum samples from DMD patients at 3 to 5 timepoints. Quantification of the biomarkers is achieved by detection of the same biomarker fragment either through interaction with validated antibodies in immuno-assays or through quantification of peptides by Parallel Reaction Monitoring Mass Spectrometry assay (PRM-MS). RESULTS: Five, out of ten biomarkers previously identified by affinity-based proteomics methods, were confirmed to be associated with DMD using the mass spectrometry-based method. Two biomarkers, carbonic anhydrase III and lactate dehydrogenase B, were quantified with two independent methods, sandwich immunoassays and PRM-MS, with Pearson correlations of 0.92 and 0.946 respectively. The median concentrations of CA3 and LDHB in DMD patients was elevated in comparison to those in healthy individuals by 35- and 3-fold, respectively. Levels of CA3 vary between 10.26 and 0.36 ng/ml in DMD patients whereas those of LDHB vary between 15.1 and 0.8 ng/ml. CONCLUSIONS: These results demonstrate that orthogonal assays can be used to assess the analytical reliability of biomarker quantification assays, providing a means to facilitate the translation of biomarkers to clinical practice. This strategy also warrants the development of the most relevant biomarkers, markers that can be reliably quantified with different proteomics methods.

5.
J Proteome Res ; 21(10): 2526-2534, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36044728

RESUMO

Protein quantification strategies using multiple proteases have been shown to deliver poor interprotease accuracy in label-free mass spectrometry experiments. By utilizing six different proteases with different cleavage sites, this study explores the protease bias and its effect on accuracy and precision by using recombinant protein standards. We established 557 SRM assays, using a recombinant protein standard resource, toward 10 proteins in human plasma and determined their concentration with multiple proteases. The quantified peptides of these plasma proteins spanned 3 orders of magnitude (0.02-70 µM). In total, 60 peptides were used for absolute quantification and the majority of the peptides showed high robustness. The retained reproducibility was achieved by quantifying plasma proteins using spiked stable isotope standard recombinant proteins in a targeted proteomics workflow.


Assuntos
Peptídeo Hidrolases , Proteômica , Proteínas Sanguíneas/análise , Endopeptidases , Humanos , Marcação por Isótopo/métodos , Isótopos , Peptídeos/análise , Proteômica/métodos , Proteínas Recombinantes , Reprodutibilidade dos Testes
6.
PLoS Pathog ; 16(9): e1008855, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986788

RESUMO

SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses, based on its nuclear deoxynucleotide triphosphate (dNTP) hydrolase activity that limits availability of intracellular dNTP pools. In the present study, we demonstrate that SAMHD1 expression was increased following human cytomegalovirus (HCMV) infection, with only a modest effect on infectious virus production. SAMHD1 was rapidly phosphorylated at residue T592 after infection by cellular cyclin-dependent kinases, especially Cdk2, and by the viral kinase pUL97, resulting in a significant fraction of phosho-SAMHD1 being relocalized to the cytoplasm of infected fibroblasts, in association with viral particles and dense bodies. Thus, our findings indicate that HCMV-dependent SAMHD1 cytoplasmic delocalization and inactivation may represent a potential novel mechanism of HCMV evasion from host antiviral restriction activities.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/patogenicidade , Infecções por Herpesviridae/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Antivirais/farmacologia , Quinases Ciclina-Dependentes/metabolismo , Citomegalovirus/genética , Citoplasma/metabolismo , Citoplasma/virologia , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação , Replicação Viral/efeitos dos fármacos
7.
Metab Eng ; 72: 171-187, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35301123

RESUMO

Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a comprehensive transcriptomics comparison between cell lines, especially highlighting differences in secretory pathway utilization, a co-expression screening of 21 secretory pathway components validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components for metabolic engineering of HEK293 and CHO.


Assuntos
Via Secretória , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas Recombinantes , Via Secretória/genética
8.
Mol Cell Proteomics ; 18(12): 2433-2446, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31591263

RESUMO

Stable isotope-labeled standard (SIS) peptides are used as internal standards in targeted proteomics to provide robust protein quantification, which is required in clinical settings. However, SIS peptides are typically added post trypsin digestion and, as the digestion efficiency can vary significantly between peptides within a protein, the accuracy and precision of the assay may be compromised. These drawbacks can be remedied by a new class of internal standards introduced by the Human Protein Atlas project, which are based on SIS recombinant protein fragments called SIS PrESTs. SIS PrESTs are added initially to the sample and SIS peptides are released on trypsin digestion. The SIS PrEST technology is promising for absolute quantification of protein biomarkers but has not previously been evaluated in a clinical setting. An automated and scalable solid phase extraction workflow for desalting and enrichment of plasma digests was established enabling simultaneous preparation of up to 96 samples. Robust high-precision quantification of 13 apolipoproteins was achieved using a novel multiplex SIS PrEST-based LC-SRM/MS Tier 2 assay in non-depleted human plasma. The assay exhibited inter-day coefficients of variation between 1.5% and 14.5% (median = 3.5%) and was subsequently used to investigate the effects of omega-3 carboxylic acids (OM3-CA) and fenofibrate on these 13 apolipoproteins in human plasma samples from a randomized placebo-controlled trial, EFFECT I (NCT02354976). No significant changes were observed in the OM3-CA arm, whereas treatment with fenofibrate significantly increased apoAII and reduced apoB, apoCI, apoE and apoCIV levels. The reduction in apoCIV following fenofibrate treatment is a novel finding. The study demonstrates that SIS PrESTs can facilitate the generation of robust multiplexed biomarker Tier 2 assays for absolute quantification of proteins in clinical studies.


Assuntos
Apolipoproteínas/sangue , Ácidos Carboxílicos/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Fenofibrato/farmacologia , Marcação por Isótopo , Espectrometria de Massas em Tandem/métodos , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Método Duplo-Cego , Humanos , Marcação por Isótopo/normas , Pessoa de Meia-Idade , Fragmentos de Peptídeos , Proteínas Recombinantes , Reprodutibilidade dos Testes
9.
J Proteome Res ; 19(12): 4815-4825, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32820635

RESUMO

Spike-in of standards of known concentrations used in proteomics-based workflows is an attractive approach for both accurate and precise multiplexed protein quantification. Here, a quantitative method based on targeted proteomics analysis of plasma proteins using isotope-labeled recombinant standards originating from the Human Protein Atlas project has been established. The standards were individually quantified prior to being employed in the final multiplex assay. The assays are mainly directed toward actively secreted proteins produced in the liver, but may also originate from other parts of the human body. This study included 21 proteins classified by the FDA as either drug targets or approved clinical protein biomarkers. We describe the use of this multiplex assay for profiling a well-defined human cohort with sample collection spanning over a one-year period. Samples were collected at four different time points, which allowed for a longitudinal analysis to assess the variable plasma proteome within individuals. Two assays toward APOA1 and APOB had available clinical data, and the two assays were benchmarked against each other. The clinical assay is based on antibodies and shows high correlation between the two orthogonal methods, suggesting that targeted proteomics with highly parallel, multiplex analysis is an attractive alternative to antibody-based protein assays.


Assuntos
Proteoma , Proteômica , Proteínas Sanguíneas , Humanos , Marcação por Isótopo , Proteínas Recombinantes/genética
10.
J Proteome Res ; 19(5): 1900-1912, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163288

RESUMO

A Think-Tank Meeting was convened by the National Cancer Institute (NCI) to solicit experts' opinion on the development and application of multiomic single-cell analyses, and especially single-cell proteomics, to improve the development of a new generation of biomarkers for cancer risk, early detection, diagnosis, and prognosis as well as to discuss the discovery of new targets for prevention and therapy. It is anticipated that such markers and targets will be based on cellular, subcellular, molecular, and functional aberrations within the lesion and within individual cells. Single-cell proteomic data will be essential for the establishment of new tools with searchable and scalable features that include spatial and temporal cartographies of premalignant and malignant lesions. Challenges and potential solutions that were discussed included (i) The best way/s to analyze single-cells from fresh and preserved tissue; (ii) Detection and analysis of secreted molecules and from single cells, especially from a tissue slice; (iii) Detection of new, previously undocumented cell type/s in the premalignant and early stage cancer tissue microenvironment; (iv) Multiomic integration of data to support and inform proteomic measurements; (v) Subcellular organelles-identifying abnormal structure, function, distribution, and location within individual premalignant and malignant cells; (vi) How to improve the dynamic range of single-cell proteomic measurements for discovery of differentially expressed proteins and their post-translational modifications (PTM); (vii) The depth of coverage measured concurrently using single-cell techniques; (viii) Quantitation - absolute or semiquantitative? (ix) Single methodology or multiplexed combinations? (x) Application of analytical methods for identification of biologically significant subsets; (xi) Data visualization of N-dimensional data sets; (xii) How to construct intercellular signaling networks in individual cells within premalignant tumor microenvironments (TME); (xiii) Associations between intrinsic cellular processes and extrinsic stimuli; (xiv) How to predict cellular responses to stress-inducing stimuli; (xv) Identification of new markers for prediction of progression from precursor, benign, and localized lesions to invasive cancer, based on spatial and temporal changes within individual cells; (xvi) Identification of new targets for immunoprevention or immunotherapy-identification of neoantigens and surfactome of individual cells within a lesion.


Assuntos
Vacinas Anticâncer , Neoplasias , Biomarcadores , Biomarcadores Tumorais/genética , Imunoterapia , National Cancer Institute (U.S.) , Proteômica , Estados Unidos
11.
Proteomics ; 19(15): e1900008, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31278833

RESUMO

The plasma proteome offers a clinically useful window into human health. Recent advances from highly multiplexed assays now call for appropriate pipelines to validate individual candidates. Here, a workflow is developed to build dual binder sandwich immunoassays (SIA) and for proteins predicted to be secreted into plasma. Utilizing suspension bead arrays, ≈1800 unique antibody pairs are first screened against 209 proteins with recombinant proteins as well as EDTA plasma. Employing 624 unique antibodies, dilution-dependent curves in plasma and concentration-dependent curves of full-length proteins for 102 (49%) of the targets are obtained. For 22 protein assays, the longitudinal, interindividual, and technical performance is determined in a set of plasma samples collected from 18 healthy subjects every third month over 1 year. Finally, 14 of these assays are compared with with SIAs composed of other binders, proximity extension assays, and affinity-free targeted mass spectrometry. The workflow provides a multiplexed approach to screen for SIA pairs that suggests using at least three antibodies per target. This design is applicable for a wider range of targets of the plasma proteome, and the assays can be applied for discovery but also to validate emerging candidates derived from other platforms.


Assuntos
Imunoensaio/métodos , Biotinilação , Humanos , Espectrometria de Massas , Pessoa de Meia-Idade , Plasma/química , Proteoma/análise , Proteômica/métodos
12.
J Proteome Res ; 18(7): 2706-2718, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31094526

RESUMO

The availability of proteomics resources hosting protein and peptide standards, as well as the data describing their analytical performances, will continue to enhance our current capabilities to develop targeted proteomics methods for quantitative biology. This study describes the analysis of a resource of 26,840 individually purified recombinant protein fragments corresponding to more than 16,000 human protein-coding genes. The resource was screened to identify proteotypic peptides suitable for targeted proteomics efforts, and we report LC-MS/MS assay coordinates for more than 25,000 proteotypic peptides, corresponding to more than 10,000 unique proteins. Additionally, peptide formation and digestion kinetics were, for a subset of the standards, monitored using a time-course protocol involving parallel digestion of isotope-labeled recombinant protein standards and endogenous human plasma proteins. We show that the strategy by adding isotope-labeled recombinant proteins before trypsin digestion enables short digestion protocols (≤60 min) with robust quantitative precision. In a proof-of-concept study, we quantified 23 proteins in human plasma using assay parameters defined in our study and used the standards to describe distinct clusters of individuals linked to different levels of LPA, APOE, SERPINA5, and TFRC. In summary, we describe the use and utility of a resource of recombinant proteins to identify proteotypic peptides useful for targeted proteomics assay development.


Assuntos
Fragmentos de Peptídeos/análise , Proteômica/métodos , Proteínas Recombinantes/análise , Proteínas Sanguíneas/análise , Cromatografia Líquida/métodos , Humanos , Marcação por Isótopo/métodos , Espectrometria de Massas em Tandem/métodos , Tripsina/metabolismo
13.
Mol Syst Biol ; 14(3): e7858, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507054

RESUMO

Novel therapies are undergoing clinical trials, for example, the Hsp90 inhibitor, XL888, in combination with BRAF inhibitors for the treatment of therapy-resistant melanomas. Unfortunately, our data show that this combination elicits a heterogeneous response in a panel of melanoma cell lines including PDX-derived models. We sought to understand the mechanisms underlying the differential responses and suggest a patient stratification strategy. Thermal proteome profiling (TPP) identified the protein targets of XL888 in a pair of sensitive and unresponsive cell lines. Unbiased proteomics and phosphoproteomics analyses identified CDK2 as a driver of resistance to both BRAF and Hsp90 inhibitors and its expression is regulated by the transcription factor MITF upon XL888 treatment. The CDK2 inhibitor, dinaciclib, attenuated resistance to both classes of inhibitors and combinations thereof. Notably, we found that MITF expression correlates with CDK2 upregulation in patients; thus, dinaciclib would warrant consideration for treatment of patients unresponsive to BRAF-MEK and/or Hsp90 inhibitors and/or harboring MITF amplification/overexpression.


Assuntos
Compostos Azabicíclicos/farmacologia , Quinase 2 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Imidazóis/farmacologia , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Oximas/farmacologia , Ácidos Ftálicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Óxidos N-Cíclicos , Quinase 2 Dependente de Ciclina/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Indolizinas , Melanoma/tratamento farmacológico , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Fosfoproteínas/metabolismo , Proteômica , Compostos de Piridínio/farmacologia , Regulação para Cima
14.
J Proteome Res ; 17(5): 1879-1886, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29631402

RESUMO

A natural way to benchmark the performance of an analytical experimental setup is to use samples of known composition and see to what degree one can correctly infer the content of such a sample from the data. For shotgun proteomics, one of the inherent problems of interpreting data is that the measured analytes are peptides and not the actual proteins themselves. As some proteins share proteolytic peptides, there might be more than one possible causative set of proteins resulting in a given set of peptides and there is a need for mechanisms that infer proteins from lists of detected peptides. A weakness of commercially available samples of known content is that they consist of proteins that are deliberately selected for producing tryptic peptides that are unique to a single protein. Unfortunately, such samples do not expose any complications in protein inference. Hence, for a realistic benchmark of protein inference procedures, there is a need for samples of known content where the present proteins share peptides with known absent proteins. Here, we present such a standard, that is based on E. coli expressed human protein fragments. To illustrate the application of this standard, we benchmark a set of different protein inference procedures on the data. We observe that inference procedures excluding shared peptides provide more accurate estimates of errors compared to methods that include information from shared peptides, while still giving a reasonable performance in terms of the number of identified proteins. We also demonstrate that using a sample of known protein content without proteins with shared tryptic peptides can give a false sense of accuracy for many protein inference methods.


Assuntos
Algoritmos , Benchmarking/métodos , Proteômica/métodos , Homologia de Sequência de Aminoácidos , Benchmarking/normas , Escherichia coli/metabolismo , Humanos , Fragmentos de Peptídeos/análise , Peptídeos/análise , Proteínas/análise , Proteínas/metabolismo , Tripsina/metabolismo
15.
Mol Syst Biol ; 12(10): 883, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27951527

RESUMO

An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Linhagem Celular , Expressão Gênica , Humanos , Proteoma/genética , Proteoma/metabolismo
16.
Nucleic Acids Res ; 43(7): e49, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25618848

RESUMO

We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We present a robust automated protocol for restriction enzyme based SPC and its performance for the cloning of >60 000 unique human gene fragments into expression vectors. In addition, we report on SPC-based single-strand assembly for applications where exact control of the sequence between fragments is needed or where multiple inserts are to be assembled. In this approach, the solid support allows for head-to-tail assembly of DNA fragments based on hybridization and polymerase fill-in. The usefulness of head-to-tail SPC was demonstrated by assembly of >150 constructs with up to four DNA parts at an average success rate above 80%. We report on several applications for SPC and we suggest it to be particularly suitable for high-throughput efforts using laboratory workstations.


Assuntos
Clonagem Molecular/métodos , DNA/genética , Enzimas de Restrição do DNA/metabolismo , Vetores Genéticos , Hibridização de Ácido Nucleico
17.
Expert Rev Proteomics ; 13(1): 83-98, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26558424

RESUMO

Aiming at clinical studies of human diseases, antibody-assisted assays have been applied to biomarker discovery and toward a streamlined translation from patient profiling to assays supporting personalized treatments. In recent years, integrated strategies to couple and combine antibodies with mass spectrometry-based proteomic efforts have emerged, allowing for novel possibilities in basic and clinical research. Described in this review are some of the field's current and emerging immunocapture approaches from an affinity proteomics perspective. Discussed are some of their advantages, pitfalls and opportunities for the next phase in clinical and translational proteomics.


Assuntos
Anticorpos/química , Proteoma/isolamento & purificação , Animais , Humanos , Imunoprecipitação , Limite de Detecção , Espectrometria de Massas , Ligação Proteica , Proteômica/métodos , Pesquisa Translacional Biomédica
18.
Mol Cell Proteomics ; 13(6): 1611-24, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24722731

RESUMO

The combination of immuno-based methods and mass spectrometry detection has great potential in the field of quantitative proteomics. Here, we describe a new method (immuno-SILAC) for the absolute quantification of proteins in complex samples based on polyclonal antibodies and stable isotope-labeled recombinant protein fragments to allow affinity enrichment prior to mass spectrometry analysis and accurate quantification. We took advantage of the antibody resources publicly available from the Human Protein Atlas project covering more than 80% of all human protein-coding genes. Epitope mapping revealed that a majority of the polyclonal antibodies recognized multiple linear epitopes, and based on these results, a semi-automated method was developed for peptide enrichment using polyclonal antibodies immobilized on protein A-coated magnetic beads. A protocol based on the simultaneous multiplex capture of more than 40 protein targets showed that approximately half of the antibodies enriched at least one functional peptide detected in the subsequent mass spectrometry analysis. The approach was further developed to also generate quantitative data via the addition of heavy isotope-labeled recombinant protein fragment standards prior to trypsin digestion. Here, we show that we were able to use small amounts of antibodies (50 ng per target) in this manner for efficient multiplex analysis of quantitative levels of proteins in a human HeLa cell lysate. The results suggest that polyclonal antibodies generated via immunization of recombinant protein fragments could be used for the enrichment of target peptides to allow for rapid mass spectrometry analysis taking advantage of a substantial reduction in sample complexity. The possibility of building up a proteome-wide resource for immuno-SILAC assays based on publicly available antibody resources is discussed.


Assuntos
Espectrometria de Massas , Proteínas de Neoplasias/biossíntese , Proteômica/métodos , Proteínas Recombinantes/biossíntese , Anticorpos/imunologia , Cromatografia Líquida , Epitopos/biossíntese , Epitopos/isolamento & purificação , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Marcação por Isótopo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação
19.
J Appl Lab Med ; 9(2): 329-341, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113397

RESUMO

BACKGROUND: Developing and implementing new patient-centric strategies for drug trials lowers the barrier to participation for some patients by reducing the need to travel to research sites. In early chronic kidney disease (CKD) trials, albuminuria is the key measure for determining treatment effect prior to pivotal kidney outcome trials. METHODS: To facilitate albuminuria sample collection outside of a clinical research site, we developed 2 quantitative microsampling methods to determine the urinary albumin to creatinine ratio (UACR). Readout was performed by LC-MS/MS. RESULTS: For the Mitra device the within-batch precision (CV%) was 2.8% to 4.6% and the between-batch precision was 5.3% to 6.1%. Corresponding data for the Capitainer device were 4.0% to 8.6% and 6.7% to 9.0%, respectively. The storage stability at room temperature for 3 weeks was 98% to 103% for both devices. The recovery for the Mitra and Capitainer devices was 104% (SD 7.0%) and 95 (SD 7.4%), respectively. The inter-assay comparison of UACR assessment generated results that were indistinguishable regardless of microsampling technique. The accuracy based on LC-MS/MS vs analysis of neat urine using a clinical chemistry analyzer was assessed in a clinical setting, resulting in 102 ± 8.0% for the Mitra device and 95 ± 10.0% for the Capitainer device. CONCLUSIONS: Both UACR microsampling measurements exhibit excellent accuracy and precision compared to a clinical chemistry analyzer using neat urine. We applied our patient-centric sampling strategy to subjects with heart failure in a clinical setting. Precise UACR measurements using quantitative microsampling at home would be beneficial in clinical drug development for kidney therapies.


Assuntos
Albuminúria , Espectrometria de Massas em Tandem , Humanos , Creatinina , Albuminúria/diagnóstico , Cromatografia Líquida , Assistência Centrada no Paciente , Albuminas
20.
PLoS One ; 18(2): e0281772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36791076

RESUMO

Lipoprotein(a), also known as Lp(a), is an LDL-like particle composed of apolipoprotein(a) (apo(a)) bound covalently to apolipoprotein B100. Plasma concentrations of Lp(a) are highly heritable and vary widely between individuals. Elevated plasma concentration of Lp(a) is considered as an independent, causal risk factor of cardiovascular disease (CVD). Targeted mass spectrometry (LC-SRM/MS) combined with stable isotope-labeled recombinant proteins provides robust and precise quantification of proteins in the blood, making LC-SRM/MS assays appealing for monitoring plasma proteins for clinical implications. This study presents a novel quantitative approach, based on proteotypic peptides, to determine the absolute concentration of apo(a) from two microliters of plasma and qualified according to guideline requirements for targeted proteomics assays. After optimization, assay parameters such as linearity, lower limits of quantification (LLOQ), intra-assay variability (CV: 4.7%) and inter-assay repeatability (CV: 7.8%) were determined and the LC-SRM/MS results were benchmarked against a commercially available immunoassay. In summary, the measurements of an apo(a) single copy specific peptide and a kringle 4 specific peptide allow for the determination of molar concentration and relative size of apo(a) in individuals.


Assuntos
Apolipoproteínas A , Proteômica , Humanos , Apoproteína(a) , Peptídeos/química , Lipoproteína(a)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA